31 research outputs found
Fire Suppression Impacts on Fuels and Fire Intensity in the Western U.S.: Insights from Archaeological Luminescence Dating in Northern New Mexico
Here, we show that the last century of fire suppression in the western U.S. has resulted in fire intensities that are unique over more than 900 years of record in ponderosa pine forests (Pinus ponderosa). Specifically, we use the heat-sensitive luminescence signal of archaeological ceramics and tree-ring fire histories to show that a recent fire during mild weather conditions was more intense than anything experienced in centuries of frequent wildfires. We support this with a particularly robust set of optically stimulated luminescence measurements on pottery from an archaeological site in northern New Mexico. The heating effects of an October 2012 CE prescribed fire reset the luminescence signal in all 12 surface samples of archaeological ceramics, whereas none of the 10 samples exposed to at least 14 previous fires (1696â1893 CE) revealed any evidence of past thermal impact. This was true regardless of the fire behavior contexts of the 2012 CE samples (crown, surface, and smoldering fires). It suggests that the fuel characteristics from fire suppression at this site have no analog during the 550 years since the depopulation of this site or the 350 years of preceding occupation of the forested landscape of this region
The role of tropical-extratropical interaction and synoptic variability in maintaining the South Pacific Convergence Zone in CMIP5 models
The South Pacific Convergence Zone (SPCZ) is simulated as too zonal a feature in current generation climate models, including those in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). This zonal bias induces errors in tropical convective heating, with subsequent effects on global circulation. The SPCZ structure, particularly in the subtropics, is governed by the tropical-extratropical interaction between transient synoptic systems and the mean background state. However, the fidelity of synoptic-scale interactions as simulated by CMIP5 models has not yet been evaluated. In this study, analysis of synoptic variability in the simulated subtropical SPCZ reveals that the basic mechanism of tropical-extratropical interaction is generally well simulated, with storms approaching the SPCZ along comparable trajectories to observations. However, there is a broad spread in mean precipitation and its variability across the CMIP5 ensemble. Inter-model spread appears to relate to a biased background state in which the synoptic waves propagate. In particular, the region of mean negative zonal stretching deformation or "storm graveyard" in the upper troposphere?a feature previously determined to play a key role in SPCZ-storm interactions?is typically displaced in CMIP5 models to the northeast of its position in reanalysis data, albeit with individual model graveyards displaying a pronounced (25 degree) longitudinal spread. From these findings, we suggest that SPCZs simulated by CMIP5 models are not simply too zonal; rather, in models the subtropical SPCZ manifests a diagonal tilt similar to observations while SST biases force an overly zonal tropical SPCZ, resulting in a more disjointed SPCZ than observed
Recommended from our members
Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA
Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes. This article is part of the themed issue âThe interaction of fire and mankindâ
Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms
We demonstrate that using metallic tips for noncontact atomic force microscopy (NC-AFM) imaging at relatively large (>0.5 nm) tip-surface separations provides a reliable method for studying molecules on insulating surfaces with chemical resolution and greatly reduces the complexity of interpreting experimental data. The experimental NC-AFM imaging and theoretical simulations were carried out for the NiO(001) surface as well as adsorbed CO and Co-Salen molecules using Cr-coated Si tips. The experimental results and density functional theory calculations confirm that metallic tips possess a permanent electric dipole moment with its positive end oriented toward the sample. By analyzing the experimental data, we could directly determine the dipole moment of the Cr-coated tip. A model representing the metallic tip as a point dipole is described and shown to produce NC-AFM images of individual CO molecules adsorbed onto NiO(001) in good quantitative agreement with experimental results. Finally, we discuss methods for characterizing the structure of metal-coated tips and the application of these tips to imaging dipoles of large adsorbed molecules. Ă© 2014 American Chemical Society
Probing the surface chemistry of self-assembled peptide hydrogels using solution-state NMR spectroscopy
The surface chemistry of self-assembled hydrogel fibres â their charge, hydrophobicity and ion-binding dynamics â is recognised to play an important role in determining how the gels develop as well as their suitability for different applications. However, to date there are no established methodologies for the study of this surface chemistry. Here, we demonstrate how solution-state NMR spectroscopy can be employed to measure the surface chemical properties of the fibres in a range of hydrogels formed from N-functionalised dipeptides, an effective and versatile class of gelator that has attracted much attention. By studying the interactions with the gel fibres of a diverse range of probe molecules and ions, we can simultaneously study a number of surface chemical properties of the NMR invisible fibres in an essentially non-invasive manner. Our results yield fresh insights into the materials. Most notably, gel fibres assembled using different tiggering methods bear differing amounts of negative charge as a result of a partial deprotonation of the carboxylic acid groups of the gelators. We also demonstrate how chemical shift imaging (CSI) techniques can be applied to follow the formation of hydrogels along chemical gradients. We apply CSI to study the binding of Ca2+ and subsequent gelation of peptide assemblies at alkaline pH. Using metal ion-binding molecules as probes, we are able to detect the presence of bound Ca2+ ions on the surface of the gel fibres. We briefly explore how knowledge of the surface chemical properties of hydrogels could be used to inform their practical application in fields such as drug delivery and environmental remediation
The dental calculus metabolome in modern and historic samples.
INTRODUCTION: Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. OBJECTIVE: We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. METHODS: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200Â years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. RESULTS: Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. CONCLUSIONS: The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies
Introduction: Toward an Engaged Feminist Heritage Praxis
We advocate a feminist approach to archaeological heritage work in order to transform heritage practice and the production of archaeological knowledge. We use an engaged feminist standpoint and situate intersubjectivity and intersectionality as critical components of this practice. An engaged feminist approach to heritage work allows the discipline to consider womenâs, menâs, and gender non-conforming personsâ positions in the field, to reveal their contributions, to develop critical pedagogical approaches, and to rethink forms of representation. Throughout, we emphasize the intellectual labor of women of color, queer and gender non-conforming persons, and early white feminists in archaeology
âBurn the churches, break up the bellsâ: The archaeology of the Pueblo Revolt revitalization movement in New Mexico, A.D. 1680â1696
This dissertation investigates the archaeology of the Pueblo Revolt era (A.D. 1680-1696) in the Jemez Province of New Mexico, and attempts two broad goals. The first is to critically examine the anthropological phenomena of revitalization movements through a study of material culture. The second is to write an archaeological history of the events that occurred in the Jemez Province between the Pueblo Revolt of 1680 and the conclusion of the Spanish reconquest in 1696. In order to address the stated objectives, this study examines the material culture of four Pueblo villages constructed in the Jemez Province between 1680 and 1696: Patokwa (LA 96), Boletsakwa (LA 136), Cerro Colorado (LA 2048), and Astialakwa (LA 1825). Through analyses of the architecture and ceramic assemblages of these villages the nature, degree, and trajectory of the Pueblo Revolt revitalization movement is assessed, with a focus on the material signs of nativism (the elimination of foreign influence) and revivalism (the introduction of cultural practices characteristic of previous generations). The results of these analyses suggest that the revitalization movement flourished among the people of the Jemez Province in the years immediately following the Pueblo Revolt. New iconic architectural forms were created to index the past and emphasize traditional Pueblo social organization, while transformations in ceramic production and exchange attest to the commitment to nativism and revivalism in these communities. By the early 1690s, however, the revivalistic element appears to have lost momentum. A resurgence of nativism in 1696 fueled a second uprising, ending the Pueblo Revolt era. This study concludes that revitalization movements are highly negotiated and heterogeneous phenomena. The social practices of revitalization often differ from official doctrines, and the actions of followers frequently do not correspond with the words of leaders. Furthermore, the archaeological record underscores the observation that revivalism results in the creation of new forms, rather than the replication of old ones. Finally, the material culture of the Pueblo Revolt era calls attention to the effects these movements can have on long-term cultural development, emphasizing the need to consider revitalization movements in the formulation of general theories of culture change
Increasing risk of Amazonian drought due to decreasing aerosol pollution
The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (JulyâOctober) rainfall in western Amazonia correlates well with an index of the northâsouth SST gradient across the equatorial Atlantic (the 'Atlantic NâS gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic NâS gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model3, 8 show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere