577 research outputs found

    Detecting the Rise and Fall of 21 cm Fluctuations with the Murchison Widefield Array

    Full text link
    We forecast the sensitivity with which the Murchison Widefield Array (MWA) can measure the 21 cm power spectrum of cosmic hydrogen, using radiative transfer simulations to model reionization and the 21 cm signal. The MWA is sensitive to roughly a decade in scale (wavenumbers of k ~ 0.1 - 1 h Mpc^{-1}), with foreground contamination precluding measurements on larger scales, and thermal detector noise limiting the small scale sensitivity. This amounts primarily to constraints on two numbers: the amplitude and slope of the 21 cm power spectrum on the scales probed. We find, however, that the redshift evolution in these quantities can yield important information about reionization. Although the power spectrum differs substantially across plausible models, a generic prediction is that the amplitude of the 21 cm power spectrum on MWA scales peaks near the epoch when the intergalactic medium (IGM) is ~ 50% ionized. Moreover, the slope of the 21 cm power spectrum on MWA scales flattens as the ionization fraction increases and the sizes of the HII regions grow. Considering detection sensitivity, we show that the optimal MWA antenna configuration for power spectrum measurements would pack all 500 antenna tiles as close as possible in a compact core. The MWA is sensitive enough in its optimal configuration to measure redshift evolution in the slope and amplitude of the 21 cm power spectrum. Detecting the characteristic redshift evolution of our models will confirm that observed 21 cm fluctuations originate from the IGM, and not from foregrounds, and provide an indirect constraint on the volume-filling factor of HII regions during reionization. After two years of observations under favorable conditions, the MWA can constrain the filling factor at an epoch when ~ 0.5 to within roughly +/- 0.1 at 2-sigma.Comment: 14 pages, 9 figures, submitted to Ap

    The Luminosity Dependence of Quasar Clustering

    Full text link
    We investigate the luminosity dependence of quasar clustering, inspired by numerical simulations of galaxy mergers that incorporate black hole growth. These simulations have motivated a new interpretation of the quasar luminosity function. In this picture, the bright end of the quasar luminosity function consists of quasars radiating nearly at their peak luminosities, while the faint end consists mainly of very similar sources, but at dimmer phases in their evolution. We combine this model with the statistics of dark matter halos that host quasar activity. We find that, since bright and faint quasars are mostly similar sources seen in different evolutionary stages, a broad range in quasar luminosities corresponds to only a narrow range in the masses of quasar host halos. On average, bright and faint quasars reside in similar host halos. Consequently, we argue that quasar clustering should depend only weakly on luminosity. This prediction is in qualitative agreement with recent measurements of the luminosity dependence of the quasar correlation function (Croom et al. 2005) and the galaxy-quasar cross-correlation function (Adelberger & Steidel 2005). Future precision clustering measurements from SDSS and 2dF, spanning a large range in luminosity, should provide a strong test of our model.Comment: 9 pages, 4 figures, submitted to Ap

    The Line-of-Sight Proximity Effect and the Mass of Quasar Host Halos

    Get PDF
    We show that the Lyman-alpha optical depth statistics in the proximity regions of quasar spectra depend on the mass of the dark matter halos hosting the quasars. This is owing to both the overdensity around the quasars and the associated infall of gas toward them. For a fiducial quasar host halo mass of (3.0+/-1.6) h^-1 x 10^12 Msun, as inferred by Croom et al. from clustering in the 2dF QSO Redshift Survey, we show that estimates of the ionizing background (Gamma^bkg) from proximity effect measurements could be biased high by a factor of ~2.5 at z=3 owing to neglecting these effects alone. The clustering of galaxies and other active galactic nuclei around the proximity effect quasars enhances the local background, but is not expected to skew measurements by more than a few percent. Assuming the measurements of Gamma^bkg based on the mean flux decrement in the Ly-alpha forest to be free of bias, we demonstrate how the proximity effect analysis can be inverted to measure the mass of the dark matter halos hosting quasars. In ideal conditions, such a measurement could be made with a precision comparable to the best clustering constraints to date from a modest sample of only about 100 spectra. We discuss observational difficulties, including continuum flux estimation, quasar systematic redshift determination, and quasar variability, which make accurate proximity effect measurements challenging in practice. These are also likely to contribute to the discrepancies between existing proximity effect and flux decrement measurements of Gamma^bkg.Comment: 25 pages, including 14 figures, accepted by Ap

    How neutral is the intergalactic medium surrounding the redshift z=7.085 quasar ULAS J1120+0641?

    Get PDF
    The quasar ULAS J1120+0641 at redshift z=7.085 has a highly ionised near zone which is smaller than those around quasars of similar luminosity at z~6. The spectrum also exhibits evidence for a damping wing extending redward of the systemic Lya redshift. We use radiative transfer simulations in a cosmological context to investigate the implications for the ionisation state of the inhomogeneous IGM surrounding this quasar. Our simulations show that the transmission profile is consistent with an IGM in the vicinity of the quasar with a volume averaged HI fraction of f_HI>0.1 and that ULAS J1120+0641 has been bright for 10^6--10^7 yr. The observed spectrum is also consistent with smaller IGM neutral fractions, f_HI ~ 10^-3--10-4, if a damped Lya system in an otherwise highly ionised IGM lies within 5 proper Mpc of the quasar. This is, however, predicted to occur in only ~5 per cent of our simulated sight-lines for a bright phase of 10^6--10^7 yr. Unless ULAS J1120+0641 grows during a previous optically obscured phase, the low age inferred for the quasar adds to the theoretical challenge of forming a 2x10^9 M_sol black hole at this high redshift.Comment: 5 pages, 4 figures, accepted to MNRAS letter

    Dwarf Galaxy Formation Was Suppressed By Cosmic Reionization

    Full text link
    A large number of faint galaxies, born less than a billion years after the big bang, have recently been discovered. The fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of Mpc, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star formation rate. Here we present evidence for this suppression. We show that the post-reionization galaxies which produced most of the ionizing radiation at a redshift z~5.5, must have had a mass in excess of ~10^{10.6+/-0.4} solar masses or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (~10^8 solar masses). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, prior to the epoch of dwarf galaxy suppression.Comment: 19 pages, 3 figures. Accepted for publication in Nature; press embargo until publishe

    Angular fluctuations in the CXB: Is Fe 6.4 keV line tomography of the large-scale structure feasible?

    Full text link
    AGN are known to account for a major portion, if not all, of the cosmic X-ray background radiation. The dominant sharp spectral feature in their spectra is the 6.4 keV fluorescent line of iron, which may contribute to as much as ~ 5-10 % of the CXB spectral intensity at ~ 2-6 keV. Owing to cosmological redshift, the line photons detected at the energy E carry information about objects located at the redshift z=6.4/E-1. In particular, imprinted in their angular fluctuations is the information about the large-scale structure at redshift z. This opens the possibility of performing the Fe K_alpha line tomography of the cosmic large-scale structure. We show that detection of the tomographic signal at ~100 sigma confidence requires an all-sky survey by an instrument with an effective area of ~10 m^2 and field of view of ~1 deg^2. The signal is strongest for objects located at the redshift z~1 and at the angular scales corresponding to l ~ 100-300, therefore an optimal detection can be achieved with an instrument having a rather modest angular resolution of ~ 0.1-0.5 deg. For such an instrument, the CCD-type energy resolution of ~ 100-200 eV FWHM is entirely sufficient for the optimal separation of the signals coming from different redshifts. The gain in the signal strength that could potentially be achieved with energy resolution comparable to the line width is nullified by the photon counting and AGN discreteness noise. Among the currently planned and proposed missions, these requirements are best satisfied by LOFT, even though it was proposed for an entirely different purpose. Among others, clear detection should be achieved by WFXT (~ 20-35 sigma) and ATHENA (~ 10-20 sigma). eROSITA, in the course of its 4 years all-sky survey, will detect the tomographic signal only marginally.Comment: minor additions, accepted for publication in A&

    Reionization Bias in High Redshift Quasar Near-Zones

    Get PDF
    Absorption spectra of high redshift quasars exhibit an increasingly thick Ly-alpha forest towards z~6. However, the interpretation of these spectra is complicated by the fact that the Ly-alpha optical depth is already large for neutral hydrogen fractions in excess of 10^-4, and also because quasars are expected to reside in dense regions of the IGM. We present a model for the evolution of the ionization state of the IGM which is applicable to the dense, biased regions around high-redshift quasars as well as more typical regions in the IGM, and combine this with numerical radiative transfer simulations. Our model is able to simultaneously reproduce the observed Ly-alpha forest opacity at 4<z<6, the ionizing photon mean-free-path at z~4 and the rapid evolution of highly ionized near-zone sizes around high-redshift quasars at 5.8<z<6.4. We find that within 5 physical Mpc of a high redshift quasar, the evolution of the ionization state of the IGM precedes that in more typical regions by around 0.3 redshift units. More importantly, when combined with the rapid increase in the ionizing photon mean-free-path expected shortly after overlap, this offset results in an ionizing background near the quasar which exceeds the value in the rest of the IGM by a factor of ~2-3. We further find that in the post-overlap phase of reionization the size of the observed quasar near-zones is not directly sensitive to the neutral hydrogen fraction of the IGM. Instead, these sizes probe the level of the background ionization rate and the temperature of the surrounding IGM. The observed rapid evolution of the quasar near-zone sizes at 5.8<z<6.4 can thus be explained by the rapid evolution of the ionizing background, which in our model is caused by the completion of overlap at the end of reionization by 6<z<7.Comment: 16 Pages, 9 figures. Submitted for publication to MNRA

    The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    Full text link
    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{\nu} = 0.6eV(1.2eV)whencomparedtoasimulationwithoutneutrinos.WepresentconstraintsonneutrinomassesusingtheSloanDigitalSkySurveyfluxpowerspectrumaloneandfindanupperlimitofSigmamΜ<0.9 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{\nu} < 0.9 eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres

    Detection of Extended He II Reionization in the Temperature Evolution of the Intergalactic Medium

    Get PDF
    We present new measurements of the temperature of the intergalactic medium (IGM) derived from the Lyman-alpha forest over 2.0 < z < 4.8. The small-scale structure in the forest of 61 high-resolution QSO spectra is quantified using a new statistic, the curvature, and the conversion to temperature calibrated using a suite of hydrodynamic simulations. At each redshift we focus on obtaining the temperature at an optimal overdensity probed by the Lyman-alpha forest, T(Delta), where the temperature is nearly a one-to-one function of the curvature regardless of the slope of the temperature-density relation. The median 2-sigma statistical uncertainty in these measurements is 8 per cent, though there may be comparable systematic errors due to the unknown amount of Jeans smoothing in the IGM. We use our T(Delta) results to infer the temperature at the mean density, T0. Even for a maximally steep temperature-density relation, T0 must increase from ~8000 K at z ~ 4.4 to >~12000 K at z ~ 2.8. This increase is not consistent with the monotonic decline in T0 expected in the absence of He II reionization. We therefore interpret the observed rise in temperature as evidence of He II reionization beginning at z >~ 4.4. The evolution of T0 is consistent with an end to He II reionization at z ~ 3, as suggested by opacity measurements of the He II Lyman-alpha forest, although the redshift at which T0 peaks will depend somewhat on the evolution of the temperature-density relation. These new temperature measurements suggest that the heat input due to the reionization of He II dominates the thermal balance of the IGM over an extended period with Delta_z >~ 1.Comment: 19 pages, 15 figures, accepted to MNRA

    Intensity Mapping of Lyman-alpha Emission During the Epoch of Reionization

    Get PDF
    We calculate the absolute intensity and anisotropies of the Lyman-alpha radiation field present during the epoch of reionization. We consider emission from both galaxies and the intergalactic medium (IGM) and take into account the main contributions to the production of Lyman-alpha photons: recombinations, collisions, continuum emission from galaxies and scattering of Lyman-n photons in the IGM. We find that the emission from individual galaxies dominates over the IGM with a total Lyman-alpha intensity (times frequency) of about (1.43-3.57)x10^{-8} erg s^{-1} cm^{-2} sr^{-1} at a redshift of 7. This intensity level is low so it is unlikely that the Lyman-\alpha background during reionization can be established by an experiment aiming at an absolute background light measurement. Instead we consider Lyman-\alpha intensity mapping with the aim of measuring the anisotropy power spectrum which has rms fluctuations at the level of 1 x 10^{-16} [erg s^[-1} cm^{-2} sr^{-1}]^2 at a few Mpc scales. These anisotropies could be measured with a spectrometer at near-IR wavelengths from 0.9 to 1.4 \mu m with fields in the order of 0.5 to 1 sq. degrees. We recommend that existing ground-based programs using narrow band filters also pursue intensity fluctuations to study statistics on the spatial distribution of faint Lyman-\alpha emitters. We also discuss the cross-correlation signal with 21 cm experiments that probe HI in the IGM during reionization. A dedicated sub-orbital or space-based Lyman-\alpha intensity mapping experiment could provide a viable complimentary approach to probe reionization, when compared to 21 cm experiments, and is likely within experimental reach.Comment: 18 pages, 17 figure
    • 

    corecore