We investigate the luminosity dependence of quasar clustering, inspired by
numerical simulations of galaxy mergers that incorporate black hole growth.
These simulations have motivated a new interpretation of the quasar luminosity
function. In this picture, the bright end of the quasar luminosity function
consists of quasars radiating nearly at their peak luminosities, while the
faint end consists mainly of very similar sources, but at dimmer phases in
their evolution. We combine this model with the statistics of dark matter halos
that host quasar activity. We find that, since bright and faint quasars are
mostly similar sources seen in different evolutionary stages, a broad range in
quasar luminosities corresponds to only a narrow range in the masses of quasar
host halos. On average, bright and faint quasars reside in similar host halos.
Consequently, we argue that quasar clustering should depend only weakly on
luminosity. This prediction is in qualitative agreement with recent
measurements of the luminosity dependence of the quasar correlation function
(Croom et al. 2005) and the galaxy-quasar cross-correlation function
(Adelberger & Steidel 2005). Future precision clustering measurements from SDSS
and 2dF, spanning a large range in luminosity, should provide a strong test of
our model.Comment: 9 pages, 4 figures, submitted to Ap