249 research outputs found

    Visible light-induced switching of soft matter materials properties based on thioindigo photoswitches

    Get PDF
    Thioindigos are visible light responsive photoswitches with excellent spatial control over the conformational change between their trans- and cis- isomers. However, they possess limited solubility in all conventional organic solvents and polymers, hindering their application in soft matter materials. Herein, we introduce a strategy for the covalent insertion of thioindigo units into polymer main chains, enabling thioindigos to function within crosslinked polymeric hydrogels. We overcome their solubility issue by developing a thioindigo bismethacrylate linker able to undergo radical initiated thiol-ene reaction for step-growth polymerization, generating indigo-containing polymers. The optimal wavelength for the reversible trans-/cis- isomerisation of thioindigo was elucidated by constructing a detailed photochemical action plot of their switching efficiencies at a wide range of monochromatic wavelengths. Critically, indigo-containing polymers display significant photoswitching of the materials’ optical and physical properties in organic solvents and water. Furthermore, the photoswitching of thioindigo within crosslinked structures enables visible light induced modulation of the hydrogel stiffness. Both the thioindigo-containing hydrogels and photoswitching processes are non-toxic to cells, thus offering opportunities for advanced applications in soft matter materials and biology-related research

    Effects of oxytetracycline and sulfachloropyridazine residues on the reductive activity of Shewanella decolorationis S12

    Get PDF
    Effects of oxytetracycline (OTC) and sulfachloropyridazine (SCP), two of the widely used antibiotics in livestock production, on beneficial environmental microorganisms were studied. Shewanella decolorationis S12 was selected as the target bacteria for the role in reduction of Fe(III) and dye under anaerobic conditions. The results showed that the antibiotics significantly inhibited Fe(III) reduction and dye decoloration in the reduction system. The rates of Fe(II) formed (−r) were 3.6 and 0.2 mg/L/day for the OTC concentrations of 0−1 mg/L and 1−50 mg/L, respectively, with 1 mg/L as the turning point of the inhibition effect. The turning point of inhibition effect was much higher for SCP treatments, at 4 mg/L. The results also showed higher production values for adsorbed Fe(II) than soluble Fe(II) in OTC treatments, but the reverse occurred in the SCP treatments. The difference between the treatments could be due to higher sorption coefficients of OTC as compared to SCP. Transmission electron micrographs showed changes in cell structures of S. decolorationis S12 grown in medium with OTC. Detached cell walls and large vacuoles in internal cell contents were found in OTC-treated cells. The results of the present study indicated that the inhibition of antibiotic on the reduction activity of S. decolorationis S12 may be due to a decrease in live S. decolorationis S12 population and/or damages of their cell structure in this reduction system

    Short-chain fatty acids directly exert anti-inflammatory responses in podocytes and tubular epithelial cells exposed to high glucose

    Get PDF
    Aims: Gut-microbiome derived short-chain fatty acids exert anti-inflammatory effects and delay progression of kidney disease in diabetic nephropathy. The aim of this study was to examine the impact in vivo and in vitro of short-chain fatty acid treatment on cellular pathways involved in the development of experimental diabetic nephropathy.Methods: To determine the effect of short-chain fatty acids in diabetic nephropathy, we compared wildtype, GPR43−/− and GPR109A−/− mice diabetic mice treated with acetate or butyrate and assessed variables of kidney damage. We also examined the impact of short-chain fatty acid treatment on gene expression in renal tubular cells and podocytes under high glucose conditions.Results: Short-chain fatty acid treatment with acetate or butyrate protected wild-type mice against development of diabetic nephropathy, exhibiting less glomerular hypertrophy, hypercellularity and interstitial fibrosis compared to diabetic controls. Acetate and butyrate treatment did not provide the same degree of protection in diabetic GPR43−/− and GPR109A−/− diabetic mice respectively. Consistent with our in vivo results, expression of pro-inflammatory genes in tubular epithelial cells exposed to high glucose were attenuated by acetate and butyrate treatment. Acetate did not reduce inflammatory or fibrotic responses in glucose stimulated GPR43−/− TECs. Butyrate mediated inhibition of pro-fibrotic gene expression in TECs through GPR109A, and in podocytes via GPR43.Conclusion: SCFAs protect against progression of diabetic nephropathy and diminish podocyte and tubular epithelial injury and interstitial fibrosis via direct, GPR-pathway dependent effects on intrinsic kidney cells. GPR43 and GPR109A are critical to short-chain fatty acid mediated reno-protection and have potential to be harnessed as a therapeutic target in diabetic nephropathy

    PI3K p110δ uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML

    Get PDF
    Although hyperactivation of the Ras-Erk signaling pathway is known to underlie the pathogenesis of juvenile myelomonocytic leukemia (JMML), a fatal childhood disease, the PI3K-Akt signaling pathway is also dysregulated in this disease. Using genetic models, we demonstrate that inactivation of phosphatidylinositol-3-kinase (PI3K) catalytic subunit p110δ, but not PI3K p110α, corrects gain-of-function (GOF) Shp2-induced granulocyte macrophage-colony-stimulating factor (GM-CSF) hypersensitivity, Akt and Erk hyperactivation, and skewed hematopoietic progenitor distribution. Likewise, potent p110δ-specific inhibitors curtail the proliferation of GOF Shp2-expressing hematopoietic cells and cooperate with mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK) inhibition to reduce proliferation further and maximally block Erk and Akt activation. Furthermore, the PI3K p110δ-specific inhibitor, idelalisib, also demonstrates activity against primary leukemia cells from individuals with JMML. These findings suggest that selective inhibition of the PI3K catalytic subunit p110δ could provide an innovative approach for treatment of JMML, with the potential for limiting toxicity resulting from the hematopoietic-restricted expression of p110δ

    ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor

    Get PDF
    Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques (ChIP-X), such as next generation sequencing (ChIP-Seq) and microarray (ChIP–chip), has been successfully used to map active transcription factor binding sites (TFBS) of a transcription factor (TF). The targeted genes can be activated or suppressed by the TF, or are unresponsive to the TF. Microarray technology has been used to measure the actual expression changes of thousands of genes under the perturbation of a TF, but is unable to determine if the affected genes are direct or indirect targets of the TF. Furthermore, both ChIP-X and microarray methods produce a large number of false positives. Combining microarray expression profiling and ChIP-X data allows more effective TFBS analysis for studying the function of a TF. However, current web servers only provide tools to analyze either ChIP-X or expression data, but not both. Here, we present ChIP-Array, a web server that integrates ChIP-X and expression data from human, mouse, yeast, fruit fly and Arabidopsis. This server will assist biologists to detect direct and indirect target genes regulated by a TF of interest and to aid in the functional characterization of the TF. ChIP-Array is available at http://jjwanglab.hku.hk/ChIP-Array, with free access to academic users

    Thermoresponsive, stretchable, biodegradable and biocompatible poly(glycerol sebacate)-based polyurethane hydrogels

    Get PDF
    Thermoresponsive, stretchable, biodegradable and biocompatible polyester-based polyurethane (PEU) hydrogels, based on poly(glycerol sebacate) pre-polymer and poly(ethylene glycol)s of different molecular masses were synthesized by a facile solvent-based two-step method. The chemical and physical characteristics of the PEU hydrogels are tunable, enabling the design of various negatively thermosensitive, mechanically stable and biodegradable systems. The PEU hydrogels demonstrate reversible responses to a change in medium temperature from 5 °C to 37 °C, with the swelling ratio at equilibrium varying from 499% to 12%. The hydrogels have a tensile Young’s modulus, ultimate tensile strength and elongation at break in the range of 0.02–0.20 MPa, 0.05–0.47 MPa and 426–623%, respectively, and show high stretchability and full shape recovery after compression. These are similar to the mechanical properties of adipose tissues. In vitro degradation tests show mass losses of 8.7–16.3% and 10.7–20.7% without and with the presence of lipase enzyme for 31 days, respectively. In vitro cell tests show clear evidence that some of the PEU hydrogels are suitable for culturing adipose-derived stem cells and dermal fibroblasts and hence for future soft tissue regeneration. The functionalities of the PEU hydrogels were also evaluated for potential applications in drug delivery, thermal actuation and ultralow power generation. The results demonstrate the versatility of these PEU hydrogels for a variety of biomedical and engineering application

    Analysis of T Cell Subsets in Adult Primary/Idiopathic Minimal Change Disease: A Pilot Study

    Get PDF
    Aim. To characterise infiltrating T cells in kidneys and circulating lymphocyte subsets of adult patients with primary/idiopathic minimal change disease. Methods. In a cohort of 9 adult patients with primary/idiopathic minimal change recruited consecutively at disease onset, we characterized (1) infiltrating immune cells in the kidneys using immunohistochemistry and (2) circulating lymphocyte subsets using flow cytometry. As an exploratory analysis, association of the numbers and percentages of both kidney-infiltrating immune cells and the circulating lymphocyte subsets with kidney outcomes including deterioration of kidney function and proteinuria, as well as time to complete clinical remission up to 48 months of follow-up, was investigated. Results. In the recruited patients with primary/idiopathic minimal change disease, we observed (a) a dominance of infiltrating T helper 17 cells and cytotoxic cells, comprising cytotoxic T cells and natural killer cells, over Foxp3+ Treg cells in the renal interstitium; (b) an increase in the circulating total CD8+ T cells in peripheral blood; and (c) an association of some of these parameters with kidney function and proteinuria. Conclusions. In primary/idiopathic minimal change disease, a relative numerical dominance of effector over regulatory T cells can be observed in kidney tissue and peripheral blood. However, larger confirmatory studies are necessary

    Recent Advances in Nanotechnology Applied to Biosensors

    Get PDF
    In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination
    corecore