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Key Points

• Compared with ubiquitously
expressed PI3K p110a,
genetic inhibition of PI3K
p110d uniquely normalizes
mutant Shp2-induced
GM-CSF hypersensitivity.

• Potent pharmacologic
inhibitors of PI3K p110d
cooperate with MEK inhibition
to reduce mutant Shp2-
induced hyperproliferation.

Although hyperactivation of the Ras-Erk signaling pathway is known to underlie the

pathogenesis of juvenile myelomonocytic leukemia (JMML), a fatal childhood disease,

the PI3K-Akt signaling pathway is also dysregulated in this disease. Using genetic

models, we demonstrate that inactivation of phosphatidylinositol-3-kinase (PI3K)

catalytic subunit p110d, but not PI3K p110a, corrects gain-of-function (GOF) Shp2-

induced granulocyte macrophage–colony-stimulating factor (GM-CSF) hypersensitivity,

Akt and Erk hyperactivation, and skewed hematopoietic progenitor distribution. Like-

wise, potent p110d-specific inhibitors curtail the proliferation of GOF Shp2-expressing

hematopoietic cells and cooperatewithmitogen-activated or extracellular signal-regulated

protein kinase kinase (MEK) inhibition to reduce proliferation further and maximally block

Erk and Akt activation. Furthermore, the PI3K p110d-specific inhibitor, idelalisib, also

demonstrates activity against primary leukemia cells from individuals with JMML. These

findings suggest that selective inhibition of the PI3K catalytic subunit p110d could provide

an innovative approach for treatment of JMML,with thepotential for limiting toxicity resulting

from the hematopoietic-restricted expression of p110d. (Blood. 2014;123(18):2838-2842)

Introduction

Class IA phosphatidylinositol-3-kinase (PI3K) activity is composed
of catalytic subunits (p110a, p110b, or p110d) and regulatory
subunits (p85a, p55a, p50a, or p85b) and is commonly upregulated
in human malignancies as a result of somatic mutations in the genes
encoding p110a and p85a.1,2 Although mutations in the gene en-
coding p110d have not been found, the p110d protein is commonly
overexpressed in myeloid leukemia3,4 and is unique among the class
IA catalytic subunits in its capacity to induce malignant transfor-
mation independent of Ras.5

Juvenile myelomonocytic leukemia (JMML) is an aggressive
childhood myeloproliferative neoplasm characterized as being
Ras-driven because of mutations in NF1, CBL, KRAS, NRAS, or
PTPN11.6 Accordingly, inhibition of the Ras-Erk signaling pathway
using mitogen-activated or extracellular signal-regulated protein kinase
kinase (MEK) inhibitors effectively normalizes loss-of-function (LOF)
Nf1-induced and gain-of-function (GOF) Kras-induced disease in
murine models.7,8 These findings are relevant, as MEK inhibitors
have demonstrated success in BRAF and NRAS mutant melanoma in
humans.9,10 However, MEK inhibition is accompanied by undesirable
and dose-limiting adverse effects.9,11,12 Furthermore, resistance to

MEK inhibitors commonly develops via multiple resistance mecha-
nisms, including aberrant upregulation of the PI3K-Akt pathway.13

Previous studies demonstrate that PTEN expression, a negative
regulator of PI3K-Akt signaling, frequently is reduced in primary
JMML samples.14 Likewise, we recently found that genetic dis-
ruption of the PI3K regulatory subunit, p85a, normalizes GOF
PTPN11-induced hypersensitivity to granulocyte macrophage–
colony-stimulating factor (GM-CSF).15 Thus, we hypothesized that
PI3K hyperactivation promotes myeloid cell growth in JMML
beyond the customary task of a hyperactivated Ras effector and that
the PI3K catalytic subunit, p110d, uniquely promotes JMML be-
cause of its Ras-independent oncogenic properties.

Methods

Animal husbandry

Mice bearing a conditional GOF Ptpn11 allele (LSL-Shp2D61Y/1) have
been described.16 Shp2D61Y/1;Mx1Cre1 animals were crossed with
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Figure 1. Genetic inhibition of PI3K catalytic subunit p110d, but not p110a, normalizes GOF Shp2-induced hypersensitivity to GM-CSF. (A) and (B) Representative

spleens from polyI:polyC-treated Shp2D61Y/1;Mx1Cre2 mice (D61Y;Cre2, negative controls), Shp2D61Y/1;Mx1Cre1 mice (D61Y;Cre1, positive controls), and Shp2D61Y/1;

Pik3caflox/flox;Mx1Cre1 (D61Y;Cre1;p110aFl/Fl) or Shp2D61Y/1;Pik3cdD910A/D910A;Mx1Cre1 (D61Y;Cre1;p110dD910A/D910A) mice. (C) Quantification of spleen weight:body

weight (n 5 6 to 9 mice per group). *P 5 .02 for D61Y;Cre2 vs D61Y;Cre1; **P 5 .04 for D61Y;Cre1;p110dD910A/D910A vs D61Y;Cre1, statistics by unpaired, 2-tailed

student’s t test. (D) Bone marrow LDMNCs from 6 to 8 mice per genotype were plated in methylcellulose, and colony-forming unit-GM assays were carried out in duplicate in 3

to 4 independent experiments. Data are represented as percentage maximal colony formation, calculated by dividing the number of colonies at each GM-CSF concentration

by the average number of colonies at GM-CSF 10 ng/mL. *P 5 .0005 for D61Y;Cre1;p110dD910A/D910A vs D61Y;Cre1. (E) Bone marrow LDMNCs from 6 to 8 mice per

genotype were subjected to [3H]-thymidine incorporation assays in replicates of 6 in 3 to 4 independent experiments. ^P , .0001 for D61Y;Cre1;p110dD910A/D910A vs D61Y;

Cre1. For colony-forming unit-GM and [3H]-thymidine incorporation assays, data were analyzed using mixed-effects models with random intercept, using GM-CSF

concentration as a categorical variable. (F) Immunoblot demonstrating Erk and Akt hyperphosphorylation in D61Y;Cre1 mice compared with D61Y;Cre2 mice, without

normalization on successful knockout of p110a protein expression in 2 independent D61Y;Cre1;p110aFl/Fl mice. (G) Immunoblot demonstrating normalization of Erk and

Akt hyperphosphorylation in 2 independent D61Y;Cre1;p110dD910A/D910A mice compared with 2 independent D61Y;Cre1 mice. (H) Representative flow cytometry analysis

demonstrating increased megakaryocyte erythroid progenitor and decreased granulocyte macrophage progenitor in D61Y;Cre1 mice compared with D61Y;Cre2 mice, as

described previously.16 (I) Quantification of phenotypically defined bone marrow myeloid precursor distribution. *P 5 .02, with the D61Y;Cre1;p110dD910A/D910A group being

significantly closer to D61Y;Cre2 than the D61Y;Cre1;p110aFl/Fl group to D61Y;Cre2. Progenitor distribution between genotypes was analyzed by comparing Euclidian

distance between mean vectors to quantify the similarity among group mean levels, with the P value determined using the bootstrapping resampling method.
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Figure 2. Pharmacologic inhibition of PI3K catalytic subunit p110d reduces proliferation of GOF-Shp2-expressing cells and JMML primary cells. (A) Proliferation of

bone marrow LDMNCs from polyI:polyC-treated Shp2D61Y/1;Mx1Cre2 (D61Y;Cre2) and Shp2D61Y/1;Mx1Cre1 (D61Y;Cre1) mice in response to GM-CSF 1 ng/mL in the

presence of increasing concentrations of the p110d-specific inhibitor, GS-9820; n 5 4. *P , .05 for D61Y;Cre1 cells treated with GS-9820 compared with no drug; statistics

performed using unpaired, 2-tailed student’s t test. (B) Immunoblot demonstrating reduced phospho-Akt and phospho-Erk in response to increasing concentrations of

GS-9820. (C) Proliferation of bone marrow LDMNCs from polyI:polyC-treated Shp2D61Y/1;Mx1Cre2 (D61Y;Cre2) and Shp2D61Y/1;Mx1Cre1 (D61Y;Cre1) mice in response

to GM-CSF 1 ng/mL in the presence of the MEK inhibitor, PD-0325901, and increasing concentrations of the p110d-specific inhibitor, GS-9820; n 5 4. *P 5 .0002 for D61Y;

Cre1 cells treated with 0.05 mM PD0325901 vs no PD0325901. **P 5 .01 or **P 5 .0002 for D61Y;Cre1 cells treated with either 0.05 mM PD03259011 0.1 mM GS-9820 or

0.05 mM PD0325901 1 1 mM GS-9820, respectively, compared with 0.05 mM PD-0325901, statistics performed using unpaired, 2-tailed student’s t test. (D) Immunoblot

demonstrating maximal inhibition of Erk and Akt activation in the presence of both PD0325901 and GS-9820. (E) Control human bone marrow LDMNCs or primary JMML

LDMNCs (2 independent patient samples) were plated in duplicate in methylcellulose-based progenitor assays in the absence or presence of human GM-CSF 10 ng/mL

and increasing concentrations of the PI3K p110d-specific inhibitor, idelalisib. Data are represented as percentage maximal colony formation, calculated by dividing the

number of colonies in each condition by the average number of colonies in the presence of 10 ng/mL GM-CSF. (F) Myelomonocytic cell line U937 or primary JMML

LDMNCs (3 independent samples) were treated with GM-CSF, idelalisib alone, or GM-CSF plus idelalisib, followed by examination of AKT (S473) and ERK activation by

immunoblot.
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Pik3caflox/flox and Pik3cdD910A/D910A animals17,18 to genetically inactivate
p110a and p110d, respectively. Eight weeks after polyI:polyC treatment
(300 mg 3 3 intraperitoneal injections), animals were euthanized for functional
and biochemical analyses. This study was approved by the Institutional Animal
Care and Use Committee of the Indiana University School of Medicine.

Phenotypic and biochemical analyses

Murine bone marrow low-density mononuclear cells (LDMNCs) were plated
into methylcellulose-based colony and [3H]-thymidine incorporation assays
in the presence or absence of pharmacologic inhibitors, as described.15,19,20

Cell lysate preparation and immunoblotting also have been described.15,19,20

Phenotypically defined progenitor populations from mouse bone marrow
were measured using flow cytometry, as described.21 Idelalisib (formerly
known as GS-1101)22 andGS-982023 were provided byGilead Sciences, Inc,
and PD0325901 was purchased from Selleck. Ficoll-purified LDMNCs from
JMML patients (meeting World Health Organization diagnostic criteria) or
control (Lonza) were plated into methylcellulose-based assays with increasing
concentrations of idelalisib. Samples were obtained with informed consent at the
University of California, San Francisco, under a locally approved institutional
review board protocol and were used in assays under approval from the
institutional review board at the Indiana University School of Medicine.
This study was conducted in accordance with the Declaration of Helsinki.

Results and discussion

Shp2D61Y/1;Mx1Cre1 mice16 were crossed with mice bearing a
conditional knockout allele of p110a (Pik3caflox/flox).18 Although
p110a protein expression was ablated without compensatory
upregulation of p110b or p110d, spleen sizes from Shp2D61Y/1;
Pik3caflox/flox;Mx1Cre1 mice were not reduced substantially
compared with those of Shp2D61Y/1;Pik3ca1/1;Mx1Cre1 mice
(Figure 1A,C). Genetic disruption of p110a also failed to normalize
GOFShp2-inducedGM-CSFhypersensitivity inmethylcellulose-based
progenitor or 3H-thymidine incorporation assays (Figure 1D,E) and
did not reduce basal or GM-CSF-stimulated hyperphosphorylation
of Erk or Akt (Figure 1F, compare lanes 7 and 8 with lane 6).

Given the lack of effect of p110a loss, we hypothesized that PI3K
catalytic subunit p110d might specifically contribute to GOF Shp2-
induced GM-CSF hypersensitivity. Indeed, Shp2D61Y/1;Mx1Cre1
mice homozygous for kinase-dead p110d (Pik3cdD910A/D910A)17

demonstrated reduced spleen size (Figure 1B,C), normalized hyper-
sensitivity to GM-CSF (Figure 1D,E), and reduced Akt hyper-
activation (Figure 1G, compare lanes 7 and 8 with lanes 5 and 6).
Although PI3K canonically activates Akt, genetic disruption of p110d
kinase activity also reduced GOF Shp2-induced Erk activation
(Figure 1G, compare lanes 7 and 8 with 5 and 6), indicating that
p110d inhibition reduces positive crosstalk to the Ras-Erk pathway.
Genetic inhibition of p110d also normalized the skewed hematopoietic
progenitor distribution (increased megakaryocyte erythroid pro-
genitor, decreased granulocyte macrophage progenitor reported in
Shp2D61Y/1;Mx1Cre1 mice,16 whereas genetic disruption of p110a
failed to do so (Figure 1H,I). These findings reveal that p110d, a
highly expressed hematopoietic class IA PI3K isoform, is fundamental
in GOF Shp2-induced myeloproliferative neoplasm.

We next examined proliferation of GOF Shp2-expressing cells
in response to the potent p110d-specific inhibitors, GS-9820 and
idelalisib, which are currently under investigation in clinical trials
for hematological malignancies.22 Bone marrow LDMNCs from
Shp2D61Y/1;Mx1Cre2 and Shp2D61Y/1;Mx1Cre1micewere treated
with increasing concentrations ofGS-9820, andGOFShp2-expressing
cells demonstrated a dose-dependent reduction in proliferation,
whereas the wild-type (WT) Shp2-expressing cells were less sensitive

(Figure 2A). As expected, GS-9820 decreased Akt phosphorylation
and, importantly, also reduced Erk phosphorylation (Figure 2B),
similar to the effects of genetic inhibition of p110d (Figure 1G).

Abundant data indicate that MEK inhibition ameliorates GOF
Kras-induced and LOF Nf1-induced disease.7,8 As both genetic and
pharmacologic p110d-specific inhibition reduces Ras-Erk signaling,
we evaluated whether p110d cooperates with the Ras-Erk pathway
by examining whether inhibition of p110d adds to or is redundant
withMEK inhibition. Treatmentwith PD0325901 reduced proliferation
of GOF Shp2-expressing cells, and addition of the p110d-specific
inhibitor, GS-9820, further reduced proliferation in a dose-dependent
manner (Figure 2C). Addition of higher PD0325901 concentrations
(0.1 and 0.5mM) to 1mMGS-9820 did not further reduce proliferation,
indicating that relatively low doses of a MEK inhibitor, in combina-
tion with a p110d inhibitor, achieve optimal reduction in proliferation.
This is significant, as MEK inhibitors have significant toxicity.9,11,12

Biochemically, although GS-9820 reduced Akt phosphorylation
and PD0325901 reduced Erk phosphorylation, PD0325901 induced
a compensatory increase in Akt activation in cells expressing GOF
Shp2 (Figure 2D, compare lane 12 with lane 9, observed in multiple
experiments). Notably, this upregulation ofAkt phosphorylationwas
not observed inWT Shp2-expressing cells (Figure 2D, compare lane
5 with lane 2). Addition of GS-9820 to PD0325901 reduced Akt
phosphorylation levels to that observed with GS-9820 treatment
alone (compare lane 14 with lane 11). These findings suggest that
MEK inhibition reduces proliferation by inhibiting Erk activation,
andp110d inhibition further reduces proliferationbecause of effective
inhibition of residual (and potentially upregulated) Akt activation in
GOF Shp2-expressing cells. Furthermore, the differential effect
of MEK inhibition on Akt activation in the GOF Shp2 vs WT
Shp2-expressing cells could provide a therapeutic window permit-
ting selective inhibition of disease vs normal cells.

Finally, we examined the effect of idelalisib22 on primary JMML
cell-derived colony growth. Although a single JMML sample failed
to demonstrate a response (up to 5 mM idelalisib, data not shown), 2
independent samples demonstrated a dose-dependent reduction in
colony formation, whereas control bone marrow cells demonstrated
only a modest response (Figure 2E). Activation of AKT and ERK
was also reduced by idelalisib in themyelomonocytic cell line,U937,
and in primary JMML patient samples (Figure 2F). Notably, 5mM is
an achievable concentration of idelalisib in humans.24,25

Collectively, ourfindings demonstrate that PI3Kcatalytic subunit
p110dworks jointly with the Ras-Erk signaling pathway to promote
GOF Shp2-induced hypersensitivity to GM-CSF. These studies
support further investigation into the putative selective role of p110d
in JMML, as well as into the use of p110d-specific inhibitors, alone
or in combination with MEK inhibitors, as a novel therapeutic
strategy for JMML.
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