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Abstract

The mixed linear model has been widely used in genome-wide association studies (GWAS), but its application to multi-locus
GWAS analysis has not been explored and assessed. Here, we implemented a fast multi-locus random-SNP-effect EMMA
(FASTmrEMMA) model for GWAS. The model is built on random single nucleotide polymorphism (SNP) effects and a new al-
gorithm. This algorithm whitens the covariance matrix of the polygenic matrix K and environmental noise, and specifies the
number of nonzero eigenvalues as one. The model first chooses all putative quantitative trait nucleotides (QTNs) with�0.005
P-values and then includes them in a multi-locus model for true QTN detection. Owing to the multi-locus feature, the
Bonferroni correction is replaced by a less stringent selection criterion. Results from analyses of both simulated and real data
showed that FASTmrEMMA is more powerful in QTN detection and model fit, has less bias in QTN effect estimation and
requires a less running time than existing single- and multi-locus methods, such as empirical Bayes, settlement of mixed
linear model under progressively exclusive relationship (SUPER), efficient mixed model association (EMMA), compressed
MLM (CMLM) and enriched CMLM (ECMLM). FASTmrEMMA provides an alternative for multi-locus GWAS.

Key words: genome-wide association study; mixed linear model; multi-locus model; random effect

Introduction

Genome-wide association studies (GWAS) have been widely used
in the genetic dissection of quantitative traits in human, animal
and plant genetics, especially in combination with the output of

genomic sequencing technologies. The most popular method for
GWAS is the mixed linear model (MLM) method [1, 2] because of its
demonstrated effectiveness in correcting the inflation from many
small genetic effects (polygenic background) and controlling the
bias of population stratification [3–7]. Since the MLM of Yu et al. [2]
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was published, many MLM-based methods have been proposed.
However, most of them comprise a one-dimensional genome scan
by testing one marker at a time, which is involved in multiple test
correction for the threshold value of significance test. The widely
used Bonferroni correction is often too conservative to detect
many important loci for quantitative traits.

Most quantitative traits are controlled by a few genes with large
effects and numerous polygenes with minor effects. However, the
current one-dimensional genome scan approaches for GWAS do
not match the true genetic model for these traits. To overcome this
issue, multi-locus methodologies have been developed; for ex-
ample, Bayesian least absolute shrinkage and selection operator
(LASSO) [8], adaptive mixed LASSO [9], penalized Logistic regression
[10–11], Elastic-Net [12], empirical Bayes (E-BAYES) [13] and E-
BAYES LASSO [14]. If the number of markers is several times larger
than sample size, all marker effects can be included in one single
model and estimated in an unbiased way. If the number of markers
is many times larger than sample size, however, these shrinkage
approaches will fail. In this situation, we should consider how to re-
duce the number of marker effects in the multi-locus genetic
model. For example, Zhou et al. [15] developed a Bayesian sparse
linear mixed model, and Moser et al. [16] proposed a Bayesian mix-
ture model. Under these models, two to four common components
in the mixture distribution were considered and only a few vari-
ance components were estimated. Although about 500 effects in
the genetic model are finally considered after several rounds of
Gibbs sampling, the computing time becomes a major concern for
these Bayesian approaches. Recently, Segura et al. [17] and Wang
et al. [7] have proposed multi-locus MLM approaches. However, fur-
ther refinement for fast algorithm is needed.

Zhang et al.’s [1] MLM method treated the quantitative trait
nucleotide (QTN) effect as being random, in which three compo-
nent variances owing to QTNs, polygenes and residual errors need
to be estimated. If the number of effects is large, this calculation
takes a long time. To reduce computing time and increase power
in QTN detection, a compressed MLM (CMLM) with a population
parameters previously determined (P3D) algorithm [18] and an en-
riched CMLM (ECMLM) [19] have been proposed. On the other
hand, Kang et al. [3] proposed an efficient mixed model association
(EMMA), and other authors suggested alternatives, such as EMMA
eXpedited (EMMAX) [20], FaST-LMM [21], FaST-LMM-Select [22],
genome-wide EMMA [4] and genome-wide rapid association using
mixed model and regression-Gamma (GRAMMAR-Gamma) [23].
Recently, settlement of mixed linear model under progressively
exclusive relationship (SUPER) [24] has been developed based on
FaST-LMM. Among the above fast methods, the SNP effect was
treated as being fixed. Goddard et al. [25] noted that a random-
marker model has several advantages, compared with the fixed
model [7, 26, 27]. For example, the random model approach will
shrink the estimated SNP effects toward zero. However, Goddard
et al. [25] did not provide an efficient computational algorithm to
estimate marker effects.

In this article, we describe a new method that can quickly
scan each random-effect marker throughout the genome by
constructing a fast and new matrix transformation for the three
component variances. Then, all the putative QTNs with� 0.005
P-values were placed into one multi-locus genetic model and
these QTN effects were estimated by EM empirical Bayes (EMEB)
[28] for true QTN identification. This new method, called fast
multi-locus random-SNP-effect EMMA (FASTmrEMMA), was
validated by analysis of real data from Arabidopsis [29] and by a
series of simulation studies and compared with the other meth-
ods, such as E-BAYES (multi-locus model) [30], SUPER, EMMA,
ECMLM and CMLM (single-locus model).

Statistical approaches for GWAS
Fast multi-locus random-SNP-effect EMMA

FASTmrEMMA (Appendix A) is a multi-locus two-stage GWAS
approach. In the first stage, SNP effect was treated as random
and minor part of SNPs were picked up based on the prior prem-
ise that most SNPs should have no effect on the quantitative
traits. Meanwhile, three techniques were implemented to save
running time. First, a new matrix transformation was used to
multiply original MLM and its purpose is to whiten the covari-
ance matrix of the polygenic matrix K and environmental noise.
Then, a polygenic-to-residual variance ratio under the null hy-
pothesis was fixed in all the single marker genome tests. Finally,
the number of nonzero eigenvalues was specified as one. In the
second stage, all the selected SNP effects in the first stage were
placed into one multi-locus model and then estimated by
expectation and maximization empirical Bayes (EMEB) [28] for
true QTN identification. The new method has been implemented
in R and its software can be downloaded from https://cran.r-pro
ject.org/web/packages/mrMLM/index.html.

E-BAYES

E-BAYES is an existing multi-locus Bayesian approach imple-
mented by the SAS program [30], and was used as a gold stand-
ard for multi-locus model comparison. In this method, all the
SNP-effect variances are simultaneously estimated. Owing to the
multi-locus nature, Bonferroni correction is replaced by a less
stringent selection criterion. The critical value of P-value in the
significance test is set at 0.05 in three simulation experiments.

EMMA

EMMA is an existing single-locus genome scan method for
GWAS [3], and a fixed model version of the original MLM, in
which QTN effect is treated as a fixed effect with no prior distri-
bution assigned. The method was implemented by the R soft-
ware package EMMA (http://mouse.cs.ucla.edu/emma/).

CMLM and ECMLM

CMLM [18] and ECMLM [19] are existing single-locus genome
scan methods for GWAS. CMLM decreases the effective sample
size by clustering individuals into groups and eliminates the
need to re-compute variance components. ECMLM chooses the
best combination of three kinship algorithms and eight group-
ing algorithms to increases statistical power. The two methods
are also the fixed model version of the original MLM and ap-
proximation algorithm for SNP effect estimation.

SUPER

FaST-LMM [21] is a newly developed algorithm in GWAS that
can solve the computational problem, but requires that the
number of SNPs be less than the number of individuals. To over-
come this shortcoming, SUPER [24] extracts a small subset of
SNPs and uses them in the FaST-LMM. This SUPER not only re-
tains the computational advantage of the FaST-LMM but also re-
markably increases statistical power.

All ECMLM, CMLM and SUPER were implemented in the R
software package GAPIT (http://zzlab.net/GAPIT).

The methodological comparison for the above approaches is
listed in Table 1.
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Results
Fast multi-locus random-SNP-effect EMMA

Estimation of the QTN variance
FASTmrEMMA (Appendix A) is a new algorithm that can ap-
proximate the estimation of QTN variance. Thus, we need to
know whether this approximation has a significant effect on
the estimate of QTN variance. To answer this question, four
flowering time traits in Arabidopsis [29] (Appendix B) were re-
analyzed by FASTmrEMMA and an exact method implemented
by PROC MIXED in SAS. The estimates for QTN variance are
listed in Figure 1 and Supplementary Table S1. As a result,
the relative error between the two methods ranged from 0.0% to
24.09%, and the average was 1.60%, indicating no effect on the
QTN variance estimate using FASTmrEMMA under the condi-
tions of this simulation.

To confirm the effectiveness of FASTmrEMMA, three Monte
Carlo simulation experiments (Appendix C) were carried out and
the simulation procedures were almost same as those in Wang
et al. [7]. In the three experiments, various backgrounds (no, poly-
genes and epistasis) were simulated to conduct sensitivity ana-
lysis. Each sample in these simulation experiments was analyzed
by six methods. In the six methods, FASTmrEMMA is also a new
multi-locus algorithm within the framework of MLM, E-BAYES
[30] is an existing multi-locus approach under the framework of
Bayesian statistics and SUPER, EMMA, ECMLM and CMLM are the
existing single-locus GWAS methods.

Statistical power for QTN detection
In the above three simulation experiments, the power for each
QTN was defined as the proportion of samples where the QTN
was detected (the P-value is smaller than the designated thresh-
old). When only six QTNs were simulated in the first experi-
ment, the power in the detection of each QTN was higher for
FASTmrEMMA than for the others (Figure 2A; Supplementary
Table S2). When a polygenic background (h2

pg ¼ 0:092) was added
to the first experiment, a similar trend was observed (Figure 2B;
Supplementary Table S2). When the polygenic background was
changed into an epistatic background (h2

epi ¼ 0:15), the results
were also similar to those in the first experiment (Figure 2C;
Supplementary Table S2). These results demonstrate the high-
est power of FASTmrEMMA across all the approaches under
various genetic backgrounds, although the other methods are
also robust under these backgrounds.

Accuracy for estimated QTN effects
We used the average, mean squared error (MSE) and mean abso-
lute deviation (MAD) to measure the accuracy of an estimated
QTN effect. We evaluated the accuracies for the estimates of all
the six simulated QTNs across all the six methods. As a result,
the estimate of each QTN effect from FASTmrEMMA was much
closer to the true value than the estimates obtained from the
other methods. On these occasions (QTN numbers 1 and 4), the
averages from E-BAYES were closer to the true value than those
from FASTmrEMMA in three simulation experiments

Figure 1. Comparison of the QTN-variance estimates between fast multi-locus random-SNP-effect EMMA (FASTmrEMMA) and one exact algorithm implemented by

PROC MIXED in SAS. LD: days to flowering under long days; SDV: days to flowering under short days with vernalization; 8W GH LN: leaf number at flowering with

8 weeks vernalization, greenhouse; and 8W GH FT: days to flowering, 8 weeks vernalization, greenhouse.
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(Supplementary Table S2). The MSE and MAD for each QTN ef-
fect were significantly less from FASTmrEMMA than from the
others with two exceptions for QTN number 6, E-BAYES method
had slightly higher accuracy than FASTmrEMMA method in the
first and second simulation experiments (Figure 2D–I;
Supplementary Table S2). These results indicate that a higher
accuracy for the estimate of QTN effect can be achieved using
FASTmrEMMA than using the other methods.

False-positive rate and receiver operating characteristic curve
All the false QTNs, detected by the six methods, in three simula-
tion experiments were used to calculate the empirical false-
positive rates of the six methods. These results are listed in
Supplementary Table S3. In these three simulation experi-
ments, the empirical false-positive rates of the six methods
were between 0.357 and 7.785 (�1E-4), and had the same order
of magnitude. ECMLM has the lowest false-positive rate fol-
lowed by CMLM, FASTmrEMMA and EMMA methods, and SUPER
has the maximum false-positive rate followed by E-BAYES
method.

A receiver operating characteristic curve is a plot of the stat-
istical power against the controlled type I error. This curve is

frequently used to compare different methods for their efficien-
cies in the detection of significant effects; the higher the curve,
the better is the method. When 11 probability levels for signifi-
cance, between 1E-8 to 1E-3, were inserted, the corresponding
powers were calculated in the first simulation experiment. The
results are shown in Figure 3. Among the six approaches,
clearly, FASTmrEMMA method is the best one and the next one
is E-BAYES.

Computing time
In each of the three simulation experiments, computing times
for the six methods were recorded and are listed in
Supplementary Table S4. In summary, FASTmrEMMA has the
least computing time followed by ECMLM, E-BAYES, CMLM and
SUPER methods, and EMMA has the maximum computing time.

Real data analysis in Arabidopsis

To validate FASTmrEMMA, this new method along with E-
BAYES, SUPER, EMMA, ECMLM and CMLM was used to re-
analyze the Arabidopsis data [29] for days to flowering under
long days (LD), days to flowering under short days with

Figure 2. Comparison of FASTmrEMMA with the single- and multi-locus approaches under various genetic backgrounds. The single-locus model approaches include

SUPER, EMMA, ECMLM and CMLM, and the multi-locus approach has E-BAYES. The powers are presented in A–C, MSEs are showed in D–F and MADs are listed in G–I.

Six QTNs (A, D and G), six QTNs plus polygenes (B, E and H) and six QTNs plus three epistasis (C, F and I) were simulated, respectively, in the first to third simulation

experiments.
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vernalization (SDV), leaf number at flowering with 8 weeks ver-
nalization, greenhouse (8W GH LN), and days to flowering, 8
weeks vernalization, greenhouse (8W GH FT) and the results are
listed in Supplementary Table S5.

The numbers of SNPs significantly associated with the above
four traits were 20, 17, 14 and 17, respectively, for traits LD, SDV,
8W GH LN and 8W GH FT, from FASTmrEMMA method. The cor-
responding numbers of the associated SNPs were 2, 6, 1 and 5
from E-BAYES; 21, 0, 0 and 0 from SUPER; 1, 5, 0 and 2 from
EMMA; and 0, 1, 0 and 0 from both ECMLM and CMLM. Clearly,
the number of significantly associated SNPs was much larger
from FASTmrEMMA than from the other methods. These sig-
nificantly associated SNPs for each trait were used to conduct a
multiple linear regression analysis, and the corresponding
Bayesian information criteria (BIC) were calculated. For ex-
ample, the BIC value for the model of 8W GH LN was �103.47 for
FASTmrEMMA, 77.76 for E-BAYES and 117.50 for the others.
FASTmrEMMA method shows the lowest BIC values for all the
four traits (Table 2), indicating the best model fit among the six
approaches.

Based on the SNPs detected by FASTmrEMMA, 6, 11, 5 and 7
genes were previously reported to be associated with the above
four traits [31–33]. In the vicinity of the SNPs detected by E-
BAYES, the corresponding numbers of the known genes are 2, 1,
0 and 1, respectively, for the above four traits [31]. Only four
known genes for LD (SUPER), two known genes for LD (EMMA)
and three known genes for SDV (EMMA) are in the neighbor-
hood of the detected SNPs [31, 33] (Table 3). Clearly,
FASTmrEMMA method detected more known genes than did
the other methods.

We also compared all the known genes detected in this
study with all the candidate genes in Atwell et al. [29]. For

example, among seven known genes (At1g03457, At2g27380,
At2g47230, At3g56900, At3g57000, At5g06550 and At5g06590) for
8W GH FT in this study, no genes were within the 133 candidate
genes in Atwell et al. [29]. Among 11 known genes for SDV in
this study, only three genes (At5g04240, At5g57360 and
At5g57390) were within the 153 candidate genes in Atwell et al.
[29]. Clearly, FASTmrEMMA method detected new genes.

Discussion

When SNP effects are viewed as random, three variance compo-
nents will be estimated. Generally, polygenic variance is larger
than zero while variance components for most SNPs are zero
because these markers are not associated with the trait of inter-
est. In other words, as in most mixed model approaches,

Figure 3. Statistical powers for six simulated QTNs in the first simulation experiment plotted against type I error (in a log10 scale) for the six GWAS methods

(FASTmrEMMA, E-BAYES, SUPER, EMMA, ECMLM and CMLM).

Table 2. Bayesian information criterion values for four flowering
time traits in Arabidopsis using six genome-wide association study
approaches

Trait FASTmr
EMMA

E-BAYES SUPER EMMA ECMLM CMLM

LD 39.54 287.00 396.65 299.97 382.07 382.07
SDV �88.09 43.20 179.54 100.69 169.87 169.87
8W GH LN �103.47 77.76 117.50 117.50 117.50 117.50
8W GH FT �321.72 �155.55 �82.41 �101.83 �82.41 �82.41

LD: days to flowering under long days; SDV: days to flowering under short days

with vernalization; 8W GH LN: leaf number at flowering with 8 weeks vernaliza-

tion, greenhouse; 8W GH FT: days to flowering, 8 weeks vernalization,

greenhouse.
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variance components in FASTmrEMMA are also estimated
under the assumption that one variance component is zero.

FASTmrEMMA is a new algorithm, different from widely used
one-dimensional genome scan approaches, such as SUPER,
EMMA, ECMLM and CMLM. First, the SNP effects are viewed as
being random in FASTmrEMMA while they are viewed as fixed in
SUPER, EMMA, ECMLM and CMLM because the random model ap-
proach will shrink the estimated SNP effects toward zero when
the simulated QTN effects are small, leading to maximum correl-
ations between observed and predicted phenotypic values [25,
34]. Meanwhile, the power of detecting QTNs with random effects
is higher than that with fixed effects [35].

Then, a quick single marker genome scan method was pro-
posed to estimate the three variance components in the above
mixed model. Here several techniques have been incorporated
into the algorithm. The first technique is to fix the polygenic-to-
residual variance ratio, which was adopted in CMLM/P3D [18]
and EMMAX [20]. Although this algorithm is approximate, it has
almost no effect on the estimate of SNP-effect variance, even if
there is a large difference in the above ratios between the ap-
proximate and exact algorithms (Supplementary Table S1).
Clearly, this provides evidence for fixing the ratio in
FASTmrEMMA. The second technique is to use a quick matrix
calculation algorithm, such as the eigen decomposition of ma-
trix XcXT

c is the same as that of XT
c Xc (a positive number). Thus,

eigen decomposition, determinant and derivatives in the esti-
mation of kb can be quickly calculated. The final technique is to
estimate residual variance along with the estimation of fixed ef-
fects. In the single marker genome scan, therefore, only one
parameter kb needs to be estimated so that running time is obvi-
ously decreased. Although GCTA algorithm [36] may be used to
estimate the above three variance components, running time is
a major concern. A similar situation is also apparent when
using PROC MIXED in SAS in Zhang et al. (2005) [1].

Finally, our matrix transformation algorithm in FASTmrEMMA
is different from those in SUPER, EMMA, ECMLM, CMLM and multi-
locus random-SNP-effect mixed linear model (mrMLM) [7]. For ex-
ample, when many random effects are included simultaneously in
one genetic model and polygenic background also needs to be con-
trolled, at present there are no methods available. However, the
new matrix transformation algorithm can transfer polygenic back-
ground plus residual error into a normal residual error. This new
model can be easily treated by a Bayesian method. The applied
study will be reported in the near future.

The multi-variance-component algorithm, E-BAYES [30],
was also used to conduct multi-locus GWAS, especially for the
situation where the number of markers is several times larger
than sample size. However, results from simulation experi-
ments showed that FASTmrEMMA is more powerful in QTN
detection and higher accurate in QTN effect estimation than is
E-BAYES (Supplementary Table S2). FASTmrEMMA is different
from the adaptive mixed LASSO [9]. If the number of markers is
many times larger than sample size, the adaptive mixed LASSO
does not work. FASTmrEMMA is also different from both the
Bayesian sparse linear mixed model [15] and the Bayesian mix-
ture model [16]. The latter two operate under the framework of
Bayesian statistics, and the computing time becomes a major
concern.

FASTmrEMMA is different from multi-locus mixed-model
(MLMM) of Segura et al. [17] in two aspects. First, MLMM is a sim-
ple, stepwise mixed-model regression with forward inclusion
and backward elimination and FASTmrEMMA is a two-step
combined method. In MLMM, the computationally intensive
forward-backward inclusion of SNPs is clearly a limiting factor

in exploring the huge model space [17]. Second, matrix trans-
formation algorithm in MLMM is different from that in
FASTmrEMMA. This difference also exists between
FASTmrEMMA and mrMLM of Wang et al. [7].

As described by Wang et al. [7], single-locus genome scan
approaches for GWAS require Bonferroni correction for multiple
tests. However, this correction is often too conservative to detect
important loci for quantitative traits when the number of
markers is extremely large. Clearly, FASTmrEMMA is based on a
multi-locus model. Owing to the multi-locus nature, Bonferroni
correction is replaced by a less stringent selection criterion.
Results from analysis of simulated and real data further validated
the idea of a less stringent selection criterion in this study.

FASTmrEMMA is a combined method with two steps, each of
which needs a critical P-value. In the first step, three critical
P-values (0.01, 0.005 and 0.001) were compared to obtain the best
one. As a result, the 0.005 critical P-value is the best
(Supplementary Table S6). In the second step, a less stringent se-
lection criterion between 0.05 and 0.05/p was adopted, where p is
the number of markers. The two critical P-values in FASTmrEMMA
have been confirmed by our simulated and real data analysis.

FASTmrEMMA was validated by sensitivity analysis in two
aspects. First, various backgrounds (no, ploygenes and epistasis)
in the three simulation experiments have validated the new
method (Supplementary Table S2). Second, the new method
works well for more than 10 QTNs. For example, 14–20 QTNs
have been found to be associated with the four traits in
Arabidopsis thaliana and then to be closely linked with the 5–11
known genes (Supplementary Table S5).

Conclusion

In FASTmrEMMA algorithm, random-SNP-effect and multi-
locus model methods are used to improve the power for QTN
detection, and to decrease the false-positive rate, a new matrix
transformation in the first step of FASTmrEMMA is constructed
to obtain a new genetic model that includes only QTN variation
and normal residual error. Additionally, letting the number of
nonzero eigenvalues be one and fixing the polygenic-to-
residual variance ratio are used to save running time. As a re-
sult, FASTmrEMMA has the highest power and accuracy for
QTN detection and the best fit for a genetic model, as compared
with E-BAYES, SUPER, EMMA, ECMLM and CMLM.

Key Points

• GWAS is to identify a genome-wide set of genetic vari-
ants in a population by associating all possible
markers with a complex trait.

• Owing to low power and high false-positive rates in a
single-marker genome-wide scan, multi-locus GWAS
methodologies have been developed, such as
FASTmrEMMA.

• We review and assess six GWAS methodologies using
both simulated and real data. In the FASTmrEMMA,
SNP effects are viewed as being random, the covariance
matrix of the polygenic matrix K and environmental
noise are whitened and multiple markers potentially
associated with a trait are further detected by EMEB.

• FASTmrEMMA is more powerful in QTN detection and
model fit, has less bias in QTN effect estimation, and re-
quires a less running time than the other five methods.
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Appendix A. Fast multi-locus
random-SNP-effect EMMA

Genetic model

We consider the following standard MLM:

y ¼Waþ Xbþ Zuþ e (A.1)

where y is an n� 1 phenotypic vector of quantitative trait, and n
is the number of individuals; W ¼ðw1;w2; . . . ;wcÞ is an n� c ma-
trix of covariates (fixed effects) including a column vector of 1,
population structure [2] or principle component [37] may be
incorporated into W and a is a c� 1 vector of fixed effects includ-
ing the intercept; X is an n� 1 vector of marker genotypes, and b

� Nð0; r2
bÞ is random effect of putative QTN; Z is an n�m design

matrix, u �MVNmð0; r2
gKÞ is an m� 1 vector of polygenic effects;

K is a known m�m relatedness matrix; and e � MVNnð0; r2
eInÞ is

an n� 1 vector of residual errors, r2
e is the variance of residual

error, In is an n� n identity matrix and MVN denotes multivari-
ate normal distribution. In animal data sets, m is the number of
strains, n is the number of animals and Z indicates which strain
each animal belongs to (zij ¼ 1 if individual i comes from strain j
and zij ¼ 0 otherwise); in the Arabidopsis thaliana data set of
Atwell et al. [29], m ¼ n and Z ¼ In.

In the current methods, including EMMA [3], CMLM/P3D [18],
ECMLM [19], EMMAX [20], FaST-LMM [21], FaST-LMM-Select [22],
SUPER [24], GEMMA [4] and GRAMMA-Gamma [23], b is treated as
a fixed effect, from which it is relatively easy to estimate r2

g and
r2

e . In this study, we treat b as random to make the model more
realistic [25, 34, 35]. In this case, three variance components
need to be estimated under the assumption that QTN variance is
zero, because most SNPs are not associated with the trait of
interest. So the variance of y in the model (A.1) is

VarðyÞ ¼ r2
bXXT þ r2

gZKZT þ r2
e In

¼ r2
e ðkbXXT þ kgZKZT þ InÞ

¼ r2
e H

(A.2)

where kb ¼ r2
b=r

2
e and kg ¼ r2

g=r
2
e .

Fast multi-locus random-SNP-effect
EMMA (FASTmrEMMA)
The key to solve the model (A.1) is to estimate r2

b, r2
g and r2

e .
Although many algorithms or estimations are available, such
as analysis of variance, maximum likelihood (ML), restricted
maximum likelihood (REML), minimum norm quadratic un-
biased, spectral decomposition [38] and average information [39],
they are not feasible for a high number of SNPs. Hence, we pro-
posed a fast and efficient approximation algorithm in this study.

In the first step, we considered the reduced form of the model
(A.1), which deleted Xb,

y ¼Waþ Zu þ e (A.3)

The variance of y is:

VarðyÞ ¼ r2
gZKZT þ r2

e In

¼ r2
e ðkgZKZT þ InÞ

(A.4)

Using EMMA algorithm of Kang et al. [3], the estimate of kg,
denoted by bkg, can be easily obtained.

In the second step, we considered the model (A.1), and
replaced kg in (A.2) by the bkg, so

VarðyÞ ¼ r2
e ðkbXXT þ bkgZKZT þ InÞ

¼ r2
e ðkbXXT þ BÞ

(A.5)

where B ¼ bkgZKZT þ In. An eigen (or spectral) decomposition
of the positive semi-definite matrix B was

B ¼ QBKBQT
B

¼ Q1 Q2ð Þ
Kr 0

0 0

0@ 1A QT
1

QT
2

0@ 1A

¼ Q1 Q2ð Þ K
1
2
r 0

0 0

0BB@
1CCA K

1
2
r 0

0 0

0BB@
1CCA QT

1

QT
2

0@ 1A

¼ Q1 Q2ð Þ K
1
2
r 0

0 0

0BB@
1CCA QT

1

QT
2

0@ 1A Q1 Q2ð Þ K
1
2
r 0

0 0

0BB@
1CCA QT

1

QT
2

0@ 1A

¼ Q1K
1
2
r QT

1

 !
Q1K

1
2
r QT

1

 !
(A.6)

where QB is orthogonal, Kr is a diagonal matrix with positive eigen-
values, r ¼ RankðBÞ, Q1 and Q2 are the n� r and n� ðn� rÞ block
matrices of QB, 0 is the corresponding block zero matrix.

Let C ¼ Q1K
�1

2
r QT

1 , the model (A.1) was changed into

yc ¼Wcaþ Xcbþ ec (A.7)

where yc ¼ Cy, Wc ¼ CW, Xc ¼ CX and ec ¼ CZuþ Ce. Clearly, the
model (A.7) is a new MLM, and ec � MVNnð0; r2

e InÞ.

,VarðycÞ ¼ VarðCyÞ ¼ r2
e CðkbXXT þ kgZKZT þ InÞCT

Let kg ¼ bkg, using equation (A.6) and QT
1 Q1 ¼ Ir, yields

VarðCyÞ ¼ r2
e CðkbXXT þbkgZKZT þ InÞCT

¼ r2
e ðkbCXXTCT þCBCTÞ

¼ r2
e kbXcXT

c þQ1K
� 1

2
r QT

1 Q1K
1
2
r QT

1

 !
Q1K

1
2
r QT

1

 !
Q1K

� 1
2

r QT
1

 !T0@ 1A
¼ r2

e ðkbXcXT
c þ InÞ

¼ r2
e Hc ¼ Vc

(A.8)
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Once the ratio of r2
g and r2

e , kg ¼ r2
g=r

2
e , was fixed at bkg, it is pos-

sible to scan each marker on the genome. The evidence for the
effectiveness of this approximation is shown in the results
section.

Log-likelihood and restricted log-likelihood functions. According to
the descriptions for the single-locus genome scan algorithm in pre-
vious GWAS studies [3, 4, 40, 41], log-likelihood and restricted log-
likelihood functions for the model (A.7) are

lFðkb; r
2
e ; aÞ ¼ �

n
2

log ð2pÞ � n
2

log ðr2
e Þ �

1
2
log jHcj

� 1
2r2

e
yc �Wca
� �TH�1

c yc �Wca
� �

(A.9)

and

lRðkb; r2
e ; aÞ ¼ �

v
2

log ð2pÞ � v
2

log ðr2
e Þ þ

1
2
log jWcWT

c j

�1
2
log jHcj � 1

2
log jWT

c H�1
c Wcj �

1
2r2

e
yc �Wca
� �TH�1

c yc �Wca
� �

(A.10)

respectively, where Hc ¼ kbXcXT
c þ In, v ¼ n� a, a ¼ rankðWcÞ

� minðc; rÞ, c ¼ rankðWÞ, r ¼ rankðCÞ ¼ rankðBÞ, supposing W is
column full rank.

Once a and r2
e are fixed, the ML and REML estimates for kb is

equivalent to maximizing the following target functions

lFðkbja; r2
e Þ / �

n
2

log
2p
n

� �
� n

2
� 1

2
log jHcj �

n
2

log yT
c Pcyc

� �
(A.11)

lRðkbja; r2
e Þ / �

v
2

log
2p
v

� �
� v

2
þ 1

2
log jWT

c Wcj � 1
2
log jHcj

� 1
2
log jWT

c H�1
c Wcj �

v
2

log yT
c Pcyc

� �
(A.12)

where Pc ¼ H�1
c �H�1

c WcðWT
c H�1

c WcÞ�WT
c H�1

c , and � denotes
generalized inverse.

Because it is slow to calculate determinant and inversion in
the equations (A.11) and (A.12), a fast computation algorithm
should be considered. As described in GEMMA, Zhou and
Stephens [4] first obtained the first and second derivatives for
kb, and then conducted eigen (or spectral) decomposition. In
EMMA, however, Kang et al. [3] first conducted eigen decompos-
ition, and then calculated the derivatives. These two ways are
essentially the same. For simplicity, we adopted EMMA method.

It is possible to find ni and ds, such that

Hc ¼ kbXcXT
c þ In ¼ UFdiagðkbn1 þ 1; . . . ; kbnn þ 1ÞUT

F

¼ UFdiagðkbn1 þ 1; 1; . . . ; 1ÞUT
F (A.13)

McHcMc ¼McðkbXcXT
c þ InÞMc

¼ ðURWRÞdiagðkbd1 þ 1; . . . ; kbdv þ 1; 0; . . . ;0ÞðURWRÞT

¼ URdiagðkbd1 þ 1;1; . . . ; 1ÞUT
R

(A.14)

where Mc ¼ In �WcðWT
c WcÞ�WT

c ,UFis an n� n orthogonal matrix,
URis an n� v eigenvector matrix corresponding to the nonzero
eigenvalues and WR is an n� ðn� vÞ eigenvector matrix corres-
ponding to zero eigenvalues.

Note that ni ¼ 0 ði ¼ 2; . . . ;nÞ and ds ¼ 0 ðs ¼ 2; . . . ; vÞ . This is
because the nonzero eigenvalues of XcXT

c are the same as those of
XT

c Xc, which is a positive number. For technical detail the reader is
referred to SD1 and SD2 in Supplementary Data.

It should be noted that UF and UR are independent of kb. Let
UT

Ryc ¼ ðg1; . . . ; gvÞT, then finding the ML and REML estimates for
kb is equivalent to optimizing the following functions with re-
spect to kb (SD3 in Supplementary Data):

lFðkbja; r2
e Þ ¼ �

n
2

log
2p
n

� �
� n

2
� 1

2
log kbn1 þ 1

� �
� n

2
log

g2
1

kbd1 þ 1
þ
Xv

s¼2

g2
s

 !
(A.15)

lRðkbja;r2
e Þ ¼ �

v
2

log
2p
v

� �
� v

2
� 1

2
log kbd1 þ 1

� �
� v

2
log

g2
1

kbd1 þ 1
þ
Xv

s¼2

g2
s

 !
(A.16)

Estimation of parameter kb. At present three algorithms,
Newton–Raphson (NR), Fisher scoring and expectation-
maximization, are frequently used to obtain the ML and REML
estimates [42]. In this study, we adopted the NR algorithm,
which has the form

kðtþ1Þ
b;F ¼ kðtÞb;F �

l
0

Fðk
ðtÞ
b;Fja; r2

e Þ
l00Fðk

ðtÞ
b;Fja; r2

e Þ
;

kðtþ1Þ
b;R ¼ kðtÞb;R �

l
0

Rðk
ðtÞ
b;Rja; r2

e Þ
l00Rðk

ðtÞ
b;Rja; r2

e Þ
ðt ¼ 0; 1; . . . ; Þ

(A.17)

where kðtÞb;F and kðtÞb;R are the ML and REML estimates at the tth iter-
ation, respectively; and kðtþ1Þ

b;F and kðtþ1Þ
b;R are the update estimates, re-

spectively, and the first derivatives of these two functions on kb were

l
0

Fðkbja; r2
e Þ ¼ �

n1

2ðkbn1 þ 1Þ þ
n
2
� d1g2

1=ðkbd1 þ 1Þ2

g2
1=ðkbd1 þ 1Þ þ

Pv
s¼2

g2
s

(A.18)

l
0

Rðkbja; r2
e Þ ¼ �

d1

2 kbd1 þ 1
� �þ v

2
� d1g2

1=ðkbd1 þ 1Þ2

g2
1=ðkbd1 þ 1Þ þ

Xv

s¼2

g2
s

(A.19)

and the second derivatives on kb were

l
00

Fðkbja; r2
e Þ ¼

n2
1

2ðkbn1 þ 1Þ2
� n

2

�
d2

1g
2
1 g2

1 þ 2
Pv
s¼2

g2
s

� �
kbd1 þ 1
� �� �

g2
1 kbd1 þ 1
� �

þ
Pv
s¼2

g2
s

� �
kbd1 þ 1
� �2

� �2 (A.20)

l
00

Rðkbja; r2
e Þ ¼

d2
1

2ðkbd1 þ 1Þ2
� v

2

�
d2

1g
2
1 g2

1 þ 2
Pv
s¼2

g2
s

� �
kbd1 þ 1
� �� �

g2
1 kbd1 þ 1
� �

þ
Pv
s¼2

g2
s

� �
kbd1 þ 1
� �2

� �2 (A.21)

Using the idea of EMMA [3], the range of kb is between 1E-05
(corresponding to almost pure environmental effect) and 1Eþ 05
(corresponding to almost pure single-gene effect), and we
divided this range evenly into 100 regions in logarithm scale to
compute (A.18) or (A.19). The global ML or REML is searched for by
applying the NR algorithm to all the intervals where the signs of
derivatives change. This optimization technique for estimating kg
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has guaranteed the convergence as long as the kinship matrix K is
positive semi-definite. Note that XcXT

c is always positive semi-
definite.

Estimation of fixed effects a and residual variance r2
e . Once kb is

known, it is easy to estimate a and r2
e . The ML estimates for a

and r2
e were

baF ¼ WT
c
bH�1

c;F Wc

� 	�
WT

c
bH�1

c;F yc

br2
e;F ¼

1
n

g2
1bkb;Fd1 þ 1

þ
Xv

s¼2

g2
s

 ! (A.22)

respectively, where bHc;F
�1 ¼ UFdiag 1bkb;Fn1þ1

; 1; � � � ; 1
� �

UT
F . The

REML estimates for a and r2
e were

baR ¼ WT
c
bH�1

c;RWc

� 	�
WT

c
bH�1

c;Ryc

br2
e;R ¼

1
v

g2
1bkb;Rd1 þ 1

þ
Xv

s¼2

g2
s

 ! (A.23)

respectively, where v=n-a and bHc;R
�1 ¼ UFdiag 1bkb;Rn1þ1

; 1; � � � ; 1
� �

UT
F .

Best linear unbiased prediction for parameter b. Using
Covðyc bÞT , the best linear unbiased prediction for the b,bb ¼ EðbjycÞ, can be obtained. Based on the above fast and effi-
cient algorithm, the ML or REML estimate is

bb ¼ bkbXT
c UR

g1bkbd1 þ 1
; g2; . . . ; gv

 !T

(A.24)

(SD4 in Supplementary Data), where bb denotes bbF or bbR whilebkb is bkb;F or bkb;R, respectively.

Likelihood ratio test. Although the parameter on QTN in the
model (A.1) is b � Nð0; r2

bÞ, the estimation of kb is our concern in
the above algorithm. Therefore, the null hypothesis might be
kb ¼ 0[34]. The Likelihood ratio test (LRT) statistic for the ML or
REML estimate is

D ¼ 2ðlðbkbÞ � lð0ÞÞ (A.25)

where lðbkbÞ is lFðbkb;FÞ or lRðbkb;RÞ, and lð0Þ is lFð0Þ ¼ � n
2 log 2p

n

� �
� n

2

� n
2 log

Pv
s¼1

g2
s

� �
or lRð0Þ ¼ � v

2 log 2p
v

� �
� v

2� v
2 log

Pv
s¼1

g2
s

� �
while bkb is

bkb;F or bkb;R, respectively.
Under the null hypothesis, the LRT statistic D follows approxi-

mately a mixture of two v2 distributions with an equal weight,
denoted by 1

2v
2
0 þ 1

2v
2
1, where v2

0 is just a fixed number of zero and
v2

1 is a v2 distribution with one degree of freedom [34], and the
P-values can be calculated accordingly. Let P be the P-value for
each QTN, it was calculated using

P ¼
1 D ¼ 0

1
2
Pr v2

1 > D
� �

D > 0

(
(A.26)

Kinship matrix. Many methods for calculating kinship matrix Km�m

from a large number of markers have been proposed, such as
identical-by-state approach [2, 3, 7, 26, 43]. Here we adopted the
method of Kang et al. [3]. Let S be a p�m genotypic matrix with elem-
ents soi 2 f0; 0:5; 1g, the element of kinship matrix K is defined by

kij ¼

1 i ¼ j

1
p

Xp

o¼1

soi � soj þ ð1� soiÞ � ð1� sojÞ
� �

j < i ; i ¼ 2; . . . ;m

kji j > i

8>>>>><>>>>>:
(A.27)

Time complexity for the first step of FASTmrEMMA. For the
single-locus genome scan, FASTmrEMMA is involved in only
one eigen decomposition at the beginning, and computa-
tional complexity is Oðmn2Þ, where O is the big O notation. For
each SNP tested, FASTmrEMMA effectively replaces the ex-
pensive additional eigen decomposition step in EMMA, and
the computational complexity changes from Oðmn2Þ to Oðn2Þ,
because the nonzero eigenvalues of XcXT

c are the same as
those of XT

c Xc. After this, as in EMMA, each iteration of the op-
timization step requires inexpensive operations (computa-
tional complexity of OðnÞ) to evaluate both the first and
second derivatives of target functions. Therefore, the overall
time complexity for the first step of FASTmrEMMA
is Oðmn2 þ pn2 þ ptnÞ, compared with Oðmn2 þ pmn2 þ ptnÞ
for EMMA [4], where t is the number of optimization iter-
ations required for the NR method (quadratic rate of
convergence).

In the GWAS, the number of SNPs is often 1000 times larger
than the sample size, and most SNPs are not associated with the
trait of interest. In this case, fitting all the genome markers in one
model is not feasible. Once we delete these SNPs with zero ef-
fects, the reduced model is estimable. The described above can
be considered as an initial screening step for FASTmrEMMA. In
the first step of FASTmrEMMA, a less stringent criterion for the
initial stage screening was adopted, for example, all the SNPs
with the�0.005 P-values were selected to enter the next step for
further evaluation. The majority of markers will be eliminated in
the first step. Therefore, the number of markers left in the second
stage analysis is often a small subset of all markers, say a few
hundred or a few thousand at most, for example, no more than
600 significantly associated SNPs for the four traits in the A. thali-
ana data sets [29].

In the multi-locus model, we proposed to use the EMEB [28]
because EMEB method is a random model approach in which
each random marker effect is assigned an empirical distribution
with a variance, and therefore is in accordance with treating a
marker as a random effect in this study. The linear model is as
followed:

y ¼Waþ
Xq

i¼1

Xibi þ e (A.28)

where y, W, a and e are the same as model (A.1); q is the number
of the selected QTN in the first step of FASTmrEMMA; Xi and bi

are an n� 1 vector of marker genotypes and effect for the ith
QTN, respectively. In the above model, polygenic background is
not included because all the potential QTN have been included
in the model (A.28).

In the model (A.28), we adopt the normal prior for bi,

Pðbijr2
i Þ ¼ Nð0; r2

i Þ and the scaled inverse v2 prior for r2
i ,

Pðr2
i js;xÞ / r2

i

� ��1
2 sþ2ð Þ

exp � x
2r2

i

� 	
, where we set ðs;xÞ ¼ ð0; 0Þ,

which represents the Jeffreys’ prior, Pðr2
i js;xÞ ¼ 1=r2

i [44]. The

procedure for parameter estimation in EMEB [28] is as follows.
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1) Initial-step: To initialize parameters with

a ¼ WTW
� ��

WTy

r2
e ¼

1
n

y�Wað ÞT y�Wað Þ

r2
i ¼ XT

i Xi
� ��1

XT
i y�Wað Þ

h i2
þ XT

i Xi
� ��1

r2
e

2) E-step: QTN effect can be predicted by

EðbiÞ ¼ r2
i XT

i V�1ðy�WaÞ (A.29)

where V ¼
Pq
i¼1

XiX
T
i r2

i þ Ir2
e .

3) M-step: To update parameters r2
i , a and r2

e :

r2
i ¼

E bT
i bi

� �
þ x

sþ 3

a ¼ WTV�1W
� ��

WTV�1y

r2
e ¼

1
n

y�Wað ÞT y�Wa�
Xq

i¼1

XiE bið Þ
 ! (A.30)

where EðbT
i biÞ ¼ EðbT

i ÞEðbiÞ þ tr½VarðbiÞ�,VarðbiÞ ¼Ir2
i � r2

i XT
i V�1Xir

2
i

andðs;xÞ ¼ ð0; 0Þ.
Repeat E-step and M-step until convergence is satisfied.
Because the model is multi-locus in nature, Bonferroni cor-

rection is replaced by a less stringent selection criterion.
Although the general 0.05 critical value may be used for the sig-
nificance test, we decided to place a slightly more stringent cri-
terion of LOD¼ 3.0. The criterion is frequently adopted in
linkage analysis and is the equivalent of P ¼ Prðv2

1 > 3:0
�4:605Þ 	 0:0002, in which v2

1 under the null hypothesis, follows
a v2 distribution with one degree of freedom.

Appendix B. The A. thaliana data

We analyzed the well-known A. thaliana data sets published by
Atwell et al. [29]. Both phenotypes and genotypes were obtained
from http://www.arabidopsis.usc.edu/. A total of 199 Arabidopsis
lines and 216 130 SNPs were used for analysis. Four flowering
time traits (LD, SDV, 8W GH LN and 8W GH FT) with log-
transformation were re-analyzed in this study. We excluded the
individuals with missing phenotypes, non-polymorphic SNPs
and SNPs with minor allele frequency less than 0.10 and all the
six methods (FASTmrEMMA, E-BAYES, SUPER, EMMA, ECMLM
and CMLM) were used to analyze these four data sets. A total of
approximately 180 000 SNPs for each trait were used to calculate
the identity by state matrix as the estimates of relatedness [3].

Appendix C. Simulation experiments

Three Monte Carlo simulation experiments were conducted to
validate the new algorithms.

As described by Wang et al. [7] (2016), the SNP genotypes
derived from the A. thaliana data sets [29] were also used to per-
form three simulation experiments. The purpose was to com-
pare FASTmrEMMA with the single-locus model methods
(SUPER, EMMA, ECMLM and CMLM) and the multi-locus model
method (E-BAYES). In the first simulation experiment, 2000
SNPs on each chromosome were randomly sampled. As a result,
all the SNPs between 11226256 and 12038776 bp on Chr. 1, be-
tween 5045828 and 6412875 bp on Chr. 2, between 1916588 and

3196442 bp on Chr. 3, between 2232796 and 3143893 bp on Chr. 4
and between 19999868 and 21039406 bp on Chr. 5 were used to
conduct simulation studies. The sample size was 199, the num-
ber of lines from Atwell et al. [29]. Six QTNs were simulated and
placed on the SNPs with allele frequencies of 0.30; their herit-
abilities of each effect size were set as 0.10, 0.05, 0.05, 0.15, 0.05
and 0.05, respectively; their positions and effects are listed in
Supplementary Table S2. All the average and residual variance
were set at 10.0. The new phenotypes were simulated by the

model: y ¼ lþ
P6
i¼1

xibi þ e, where e � MVNnð0; 10� InÞ. Each sam-

ple was analyzed by the above six methods. For each simulated
QTN, we counted the samples in which the LOD statistic ex-
ceeded 3.0 for FASTmrEMMA, the P-value was <0.05 for E-
BAYES and the P-value�5E-6 (0:05=p) for the others. A detected,
QTN within 2 kb of the simulated QTN was considered a true
QTN. The ratio of the number of such samples to the total num-
ber of replicates (1000) represented the empirical power of this
QTN. The Type I error was calculated as the ratio of the number
of false positive effects to the total number of zero effects con-
sidered in the full model. To measure the bias of QTN effect esti-

mate, MSE and MAD were defined as MSE ¼ 1
1000

P1000

i¼1
ðbb i � bÞ2;

MAD ¼ 1
1000

P1000

i¼1
jbb i � bj, where bb i is the estimate of b for each QTN

in the ith sample. A method with a small MSE (or MAD) is gener-
ally more preferable than a method with a large MSE (or MAD).

To investigate the effect of polygenic background on
FASTmrEMMA, polygenic effect was simulated in the second
simulation experiment by multivariate normal distribution

MVNnð0; r2
pgKÞ, where r2

pg is polygenic variance, and K is the kin-

ship coefficient matrix between a pair of lines. The simulated
phenotypes were not same as those of Wang et al. [7]. Here

r2
pg ¼ 2, so h2

pg ¼ 0:092. The QTN size (r2), residual variance and

others were the same as those in the first simulation experi-
ment. The new phenotypes were simulated by the model:

y ¼ lþ
P6
i¼1

xibi þ uþ e, where polygenic effect u � MVNnð0; 2� KÞ

and e � MVNnð0; 10� InÞ.
To investigate the effect of epistatic background on

FASTmrEMMA, three epistatic QTN each with r2
epi ¼ 1:25 and

h2
epi ¼ 0:05 were simulated in the third simulation experiment.

The first one was placed between 3063784 bp on Chr. 4 and
5227063 bp on Chr. 2; the second one was placed between
5986135 bp on Chr. 2 and 2031781 bp on Chr. 3; and the third
one was placed between 2668059 bp on Chr. 3 and 11824678 bp
on Chr. 1. The QTN size (r2), residual variance and others
were also the same as those in the first simulation experiment.
The new phenotypes were simulated by the model:

y ¼ lþ
X6

i¼1

xibi þ
X3

j¼1

Aj#Bj
� �

bjj þ e, where e � MVNnð0; 10� InÞ, bjj

is the epistatic effect and Aj#Bj is its incidence coefficient.
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