58 research outputs found

    Development of adsorption ratio equation and state equation of liquid and their geological significance

    Get PDF
    There have been many theories to describe adsorbed or free gas. However, quantitative description of the occurrence characteristics of liquids in porous media has always been a great challenge due to a lack of basic theory. Through years of research, two theoretical equations, i.e., adsorption ratio equation and state equation of liquid, have been proposed to describe the characteristics of liquids in porous media, and revealed the mechanism of liquid occurrence. Further, a quantitative evaluation technology for the microscopic distribution of liquids was established by combining nuclear magnetic resonance theory. This research will be of great significance for studying the microscopic distribution of liquids in tight reservoirs, such as shale, coal, and tight sandstone.Cited as: Li, J. Development of adsorption ratio equation and state equation of liquid and their geological significance. Capillarity, 2021, 4(4): 63-65, doi: 10.46690/capi.2021.04.0

    Quantitative characterization of fluid occurrence in shale reservoirs

    Get PDF
    Shale oil and gas, as important unconventional resources, have been widely discussed in the last decade. The occurrence characteristics of fluids (oil, gas, and water) in shale reservoirs are closely related to the exploitation of shale oil and gas, therefore the quantitative characterization of fluid occurrence in shale reservoirs has received extensive attention. In this paper, the latest advances and potential challenges on this subject are summarized. With respect to shale oil, the amounts, ratios and micro-distributions of shale oil in different states can be determined using the state equation of liquid and adsorption ratio equation, which contributes to identifying high-quality shale oil reservoirs. However, it is still necessary to strengthen the research on the multi-attribute coupling relationship and oil-rock interaction of shale oil reservoirs, and the determination of occurrence characteristics of adsorbed and free oil under in situ reservoir conditions. In terms of shale gas evaluation, the process analysis method and isotope fractionation method effectively solve the problem of evaluating in situ gas-bearing characteristics of shale, and can accurately estimate the amounts of total, adsorbed and free gas. The quantum physisorption behavior of gas could be a new research direction to reveal the microscopic occurrence mechanism of shale gas. As for shale pore water, a complete evaluation procedure for determining the amounts and micro-distributions of adsorbed and free water in shale matrix pores has been established, which provides insight into the storage and flow of oil and gas. In future work, a study on the quantitative evaluation of water-rock interaction is significant for obtaining the adsorbed and free water under in situ reservoir conditions.Document Type: PerspectiveCited as: Li, J., Cai, J. Quantitative characterization of fluid occurrence in shale reservoirs. Advances in Geo-Energy Research, 2023, 9(3): 146-151. https://doi.org/10.46690/ager.2023.09.0

    Scaling Analysis of the Tensile Strength of Bamboo Fibers Using Weibull Statistics

    Get PDF
    This study demonstrates the effect of weak-link scaling on the tensile strength of bamboo fibers. The proposed model considers the random nature of fiber strength, which is reflected by using a two-parameter Weibull distribution function. Tension tests were performed on samples that could be scaled in length. The size effects in fiber length on the strength were analyzed based on Weibull statistics. The results verify the use of Weibull parameters from specimen testing for predicting the strength distributions of fibers of longer gauge lengths

    Different responses of incidence-weighted and abundance-weighted multiple facets of macroinvertebrate beta diversity to urbanization in a subtropical river system

    Get PDF
    Urbanization is one of the major drivers of biotic homogenization (i.e., decrease in beta diversity) in freshwater systems. However, only a few studies have simultaneously examined how urbanization affects multiple facets (i. e., taxonomic, functional and phylogenetic) of beta diversity and its underlying ecological drivers in urban river macroinvertebrates. Here, we distinguished the patterns and ecological mechanisms of multiple facets of macroinvertebrate beta diversity weighted by incidence and abundance data in a subtropical river system with a distinct urbanization gradient. We also investigated how total beta diversity patterns stem from replacement versus richness difference among sites. Our results showed that taxonomic and phylogenetic beta diversities weighted by incidence data were primarily driven by replacement of taxa, whereas the richness difference contributed more to multiple facets of beta diversity based on abundance data. Furthermore, multiple facets of beta diversity decreased with urbanization for both incidence-weighted and abundance-weighted data, but the former showed more substantial decreases. Both replacement and richness difference components contributed roughly equally to the decline of incidence-weighted beta diversity. In contrast, the losses of abundanceweighted beta diversity were mainly associated with replacement of taxa. Variation partitioning results revealed that all beta diversity measures based on incidence data were governed primarily by local and land-use variables, whereas spatial variables were more relevant in driving beta diversity weighted by abundance data. Overall, by comparing different facets and components of beta diversity weighted by incidence versus abundance data, we suggest that incidence-weighted data may be more sensitive in portraying the impacts of urbanization on macroinvertebrate diversity. This likely resulted from the fact that incidence-weighted data shows the importance of rare taxa in shaping homogenization induced by urbanization.Peer reviewe

    Insights on the gas permeability change in porous shale

    Get PDF
    Due to abundant nanoscale pores developed in shale, gas flow in shale presents a complex dynamic process. This paper summarized the effects from effective stress increase, shale matrix shrinkage, gas slippage and Knudsen diffusion on the gas permeability change in shale during shale gas recovery. With the reduce in gas pressure, effective stress increase leads to the decline of the permeability in an exponential form; the permeability increases due to the shale matrix shrinkage induced by gas desorption; appearances of gas slippage and Knudsen diffusion cause an additional increase in the gas permeability particularly in small pores at low pressures. In addition, some reported models evaluating the shale permeability were reviewed preliminarily. Models considering these four effects may be potentially effective to evaluate the gas permeability change in shale.Cited as: Li, J., Yu, T., Liang, X., et al. Insights on the gas permeability change in porous shale. Advances in Geo-Energy Research, 2017, 1(2): 69-73, doi: 10.26804/ager.2017.02.0

    Permeability evaluation on oil-window shale based on hydraulic flow unit: A new approach

    Get PDF
    Permeability is one of the most important petrophysical properties of shale reservoirs, controlling the fluid flow from the shale matrix to artificial fracture networks, the production and ultimate recovery of shale oil/gas. Various methods have been used to measure this parameter in shales, but no method effectively estimates the permeability of all well intervals due to the complex and heterogeneous pore throat structure of shale. A hydraulic flow unit (HFU) is a correlatable and mappable zone within a reservoir, which is used to subdivide a reservoir into distinct layers based on hydraulic flow properties. From these units, correlations between permeability and porosity can be established. In this study, HFUs were identified and combined with a back propagation neural network to predict the permeability of shale reservoirs in the Dongying Depression, Bohai Bay Basin, China. Well data from three locations were used and subdivided into modeling and validation datasets. The modeling dataset was applied to identify HFUs in the study reservoirs and to train the back propagation neural network models to predict values of porosity and flow zone indicator. Next, a permeability prediction method was established, and its generalization capability was evaluated using the validation dataset. The results identified five HFUs in the shale reservoirs within the Dongying Depression. The correlation between porosity and permeability in each HFU is generally greater than the correlation between the two same variables in the overall core data. The permeability estimation method established in this study effectively and accurately predicts the permeability of shale reservoirs in both cored and un-cored wells. Predicted permeability curves effectively reveal favorable shale oil/gas seepage layers and thus are useful for the exploration and the development of hydrocarbon resources in the Dongying Depression.Cited as: Zhang, P., Lu, S., Li, J., Zhang, J., Xue, H., Chen, C. Permeability evaluation on oil-window shale based on hydraulic flow unit: A new approach. Advances in Geo-Energy Research, 2018, 2(1): 1-13, doi: 10.26804/ager.2018.01.0

    Different responses of incidence-weighted and abundance-weighted multiple facets of macroinvertebrate beta diversity to urbanization in a subtropical river system

    Get PDF
    Urbanization is one of the major drivers of biotic homogenization (i.e., decrease in beta diversity) in freshwater systems. However, only a few studies have simultaneously examined how urbanization affects multiple facets (i. e., taxonomic, functional and phylogenetic) of beta diversity and its underlying ecological drivers in urban river macroinvertebrates. Here, we distinguished the patterns and ecological mechanisms of multiple facets of macroinvertebrate beta diversity weighted by incidence and abundance data in a subtropical river system with a distinct urbanization gradient. We also investigated how total beta diversity patterns stem from replacement versus richness difference among sites. Our results showed that taxonomic and phylogenetic beta diversities weighted by incidence data were primarily driven by replacement of taxa, whereas the richness difference contributed more to multiple facets of beta diversity based on abundance data. Furthermore, multiple facets of beta diversity decreased with urbanization for both incidence-weighted and abundance-weighted data, but the former showed more substantial decreases. Both replacement and richness difference components contributed roughly equally to the decline of incidence-weighted beta diversity. In contrast, the losses of abundanceweighted beta diversity were mainly associated with replacement of taxa. Variation partitioning results revealed that all beta diversity measures based on incidence data were governed primarily by local and land-use variables, whereas spatial variables were more relevant in driving beta diversity weighted by abundance data. Overall, by comparing different facets and components of beta diversity weighted by incidence versus abundance data, we suggest that incidence-weighted data may be more sensitive in portraying the impacts of urbanization on macroinvertebrate diversity. This likely resulted from the fact that incidence-weighted data shows the importance of rare taxa in shaping homogenization induced by urbanization.Peer reviewe

    Advances in diffusion MRI acquisition and processing in the Human Connectome Project

    Get PDF
    The Human Connectome Project (HCP) is a collaborative 5-year effort to map human brain connections and their variability in healthy adults. A consortium of HCP investigators will study a population of 1200 healthy adults using multiple imaging modalities, along with extensive behavioral and genetic data. In this overview, we focus on diffusion MRI (dMRI) and the structural connectivity aspect of the project. We present recent advances in acquisition and processing that allow us to obtain very high-quality in-vivo MRI data, whilst enabling scanning of a very large number of subjects. These advances result from 2 years of intensive efforts in optimising many aspects of data acquisition and processing during the piloting phase of the project. The data quality and methods described here are representative of the datasets and processing pipelines that will be made freely available to the community at quarterly intervals, beginning in 2013

    Reputation, Competition, and Second Opinion: An Experiment in Credence Goods Market

    No full text
    Credence goods are products and services for which buyers are unable to observe the quality they require. Incomplete information and biased advice from experts typically lead to inefficient outcomes in such markets. In this thesis, I set-up laboratory experiments to investigate whether and to which degree reputational concerns and competition can solve the credence good problem. I use a novel experimental design that implements innite horizon interactions and allows buyers to choose a service level that is different from the seller's recommendation. The results show that private reputation building in a repeated game setting does have a weak effect on improving market outcomes. Competition significantly reduces sellers' fraudulent behaviour and increases buyers' trust. With competition, the level of undertreatment is significantly less. The possibility of collecting second opinions has no obvious effect when both reputational concerns and competition are present

    Platform Competition, Vertical Differentiation, and Price Coherence

    No full text
    This paper analyzes merchants’ price coherence in two-sided markets with vertically differentiated platforms. When merchants are unable to charge different prices to consumers who purchase their products using different platforms, fee competition among platforms becomes more intense on both sides of the market. We show that with unrestricted prices, platforms compete for market share, while with price coherence, they compete for the entire sales of a merchant. As a consequence, price coherence can reduce total platform fees, increase consumer surplus, and raise total welfare. We also compare private and social incentives of a platform-merchant pair to impose price coherence, and we explore the effects of price coherence on investment incentives
    corecore