490 research outputs found
Scale Invariance and Nonlinear Patterns of Human Activity
We investigate if known extrinsic and intrinsic factors fully account for the
complex features observed in recordings of human activity as measured from
forearm motion in subjects undergoing their regular daily routine. We
demonstrate that the apparently random forearm motion possesses previously
unrecognized dynamic patterns characterized by fractal and nonlinear dynamics.
These patterns are unaffected by changes in the average activity level, and
persist when the same subjects undergo time-isolation laboratory experiments
designed to account for the circadian phase and to control the known extrinsic
factors. We attribute these patterns to a novel intrinsic multi-scale dynamic
regulation of human activity.Comment: 4 pages, three figure
Exploring regulatory networks of miR-96 in the developing inner ear.
Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network
Impact of baryons on the cluster mass function and cosmological parameter determination
Recent results by the Planck collaboration have shown that cosmological
parameters derived from the cosmic microwave background anisotropies and
cluster number counts are in tension, with the latter preferring lower values
of the matter density parameter, , and power spectrum
amplitude, . Motivated by this, we investigate the extent to which
the tension may be ameliorated once the effect of baryonic depletion on the
cluster mass function is taken into account. We use the large-volume Millennium
Gas simulations in our study, including one where the gas is pre-heated at high
redshift and one where the gas is heated by stars and active galactic nuclei
(in the latter, the self-gravity of the baryons and radiative cooling are
omitted). In both cases, the cluster baryon fractions are in reasonably good
agreement with the data at low redshift, showing significant depletion of
baryons with respect to the cosmic mean. As a result, it is found that the
cluster abundance in these simulations is around 15 per cent lower than the
commonly-adopted fit to dark matter simulations by Tinker et al (2008) for the
mass range . Ignoring this effect
produces a significant artificial shift in cosmological parameters which can be
expressed as at
(the median redshift of the cluster sample) for the
feedback model. While this shift is not sufficient to fully explain the
discrepancy, it is clear that such an effect cannot be
ignored in future precision measurements of cosmological parameters with
clusters. Finally, we outline a simple, model-independent procedure that
attempts to correct for the effect of baryonic depletion and show that it works
if the baryon-dark matter back-reaction is negligible.Comment: 10 pages, 5 figures, Accepted by MNRA
Advances in instrumentation at the W. M. Keck Observatory
In this paper we describe both recently completed instrumentation projects and our current development efforts in terms of their role in the strategic plan, the key science areas they address, and their performance as measured or predicted. Projects reaching completion in 2012 include MOSFIRE, a near IR multi-object spectrograph, a laser guide star adaptive optics facility on the Keck I telescope, and an upgrade to the guide camera for the HIRES instrument on Keck I. Projects in development include a new seeing limited integral field spectrograph for the visible wavelength range called the Keck Cosmic Web Imager (KCWI), an upgrade to the telescope control systems on both Keck telescopes, a near-IR tip/tilt sensor for the Keck I adaptive optics system, and a new grating for the OSIRIS integral field spectrograph
The X-ray Transient 2XMMi J003833.3+402133: A Candidate Magnetar at High Galactic Latitude
We present detailed analysis of the transient X-ray source 2XMMi
J003833.3+402133 detected by XMM-Newton in January 2008 during a survey of M
31. The X-ray spectrum is well fitted by either a steep power law plus a
blackbody model or a double blackbody model. Prior observations with
XMM-Newton, Chandra, Swift and ROSAT spanning 1991 to 2007, as well as an
additional Swift observation in 2011, all failed to detect this source. No
counterpart was detected in deep optical imaging with the Canada France Hawaii
Telescope down to a 3sigma lower limit of g = 26.5 mag. This source has
previously been identified as a black hole X-ray binary in M 31. While this
remains a possibility, the transient behaviour, X-ray spectrum, and lack of an
optical counterpart are equally consistent with a magnetar interpretation for
2XMMi J003833.3+402133. The derived luminosity and blackbody emitting radius at
the distance of M 31 argue against an extragalactic location, implying that if
it is indeed a magnetar it is located within the Milky Way but 22deg out of the
plane. The high Galactic latitude could be explained if 2XMMi J003833.3+402133
were an old magnetar, or if its progenitor was a runaway star that traveled
away from the plane prior to going supernova.Comment: 16 pages, 5 figures, 4 tables, accepted for publication in ApJ
following moderate revisio
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra
We present cosmological parameters derived from the angular power spectrum of
the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz
over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008
season. ACT measures fluctuations at scales 500<l<10000. We fit a model for the
lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz
and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from
radio and infrared point sources, and clustered power from infrared point
sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be
B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary
cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and
source power. The LCDM cosmological model is a good fit to the data, and LCDM
parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits,
with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB
lensing is disfavored at 2.8sigma. By measuring the third to seventh acoustic
peaks, and probing the Silk damping regime, the ACT data improve limits on
cosmological parameters that affect the small-scale CMB power. The ACT data
combined with WMAP give a 6sigma detection of primordial helium, with Y_P =
0.313+-0.044, and a 4sigma detection of relativistic species, assumed to be
neutrinos, with Neff = 5.3+-1.3 (4.6+-0.8 with BAO+H0 data). From the CMB alone
the running of the spectral index is constrained to be dn/dlnk = -0.034 +-
0.018, the limit on the tensor-to-scalar ratio is r<0.25 (95% CL), and the
possible contribution of Nambu cosmic strings to the power spectrum is
constrained to string tension Gmu<1.6 \times 10^-7 (95% CL).Comment: 20 pages, 13 figures. Submitted to ApJ. This paper is a companion to
Hajian et al. (2010) and Das et al. (2010
- …