326 research outputs found

    Stress distribution in orthodontic mini-implants

    Get PDF
    O objetivo deste trabalho foi avaliar a distribuição de tensões na resina em contato com os filetes de roscas de mini-implantes cilíndricos e cônicos, submetidos à carga lateral e torção de inserção. Um modelo fotoelástico foi confeccionado com gelatina transparente, para simular o osso alveolar. O modelo foi observado com um polariscópio plano e fotografado antes e após a ativação dos mini-implantes com força lateral e de inserção. A aplicação de cargas laterais provocou momentos fletores nos mini-implantes, aparecimento de franjas isocromáticas ao longo dos filetes do corpo dos mini-implantes e no ápice. Quando foi aplicado o torque de inserção, verificou-se a concentração de tensões próxima ao ápice. Concluiu-se que: (1) o mini-implante cilíndrico apresentou maior concentração de tensões no ápice, e (2) o mini-implante cônico apresentou maior concentração de tensões nos filetes de rosca apicais.The objective of this study was to evaluate the stress distribution in the resin in contact with the spirals of cylindrical and conical mini-implants, when submitted to lateral load and insertion torsion. A photoelastic model was fabricated using transparent gelatin to simulate the alveolar bone. The model was observed with a plane polariscope and photographically recorded before and after activation of the two screws with a lateral force and torsion. The lateral force application caused bending moments on both mini-implants, with the uprising of fringes or isochromatics, characteristics of stresses, along the threads of the mini-implants and in the apex. When the torsion was exerted in the mini-implants, a great concentration of stress upraised close to the apex. The conclusion was that, comparing conical with cylindrical mini-implants under lateral load, the stresses were similar on the traction sides. The differences appear (1) on the apex, where the cylindrical mini-implant showed a greater concentration of stress, and (2) along the spirals, in the compression side, where the conical mini-implant showed a greater concentration of stress. The greater part of the stress produced by both mini-implants, after torsion load in insertion, were concentrated on the apex. With the cylindrical mini-implant, the greater concentration of tension was close to the apex, while with the conical one, the stresses were distributed along a greater amount of apical threads

    Serum 25-hydroxyvitamin D levels in patients with Granulomatosis with Polyangiitis: association with respiratory infection

    Get PDF
    OBJECTIVES: To determine the possible association of serum 25-hydroxyvitamin D (25OHD) levels with disease activity and respiratory infection in granulomatosis with polyangiitis patients during two different periods: winter/spring and summer/autumn. METHODS: Thirty-two granulomatosis with polyangiitis patients were evaluated in the winter/spring, and the same patients (except 5) were evaluated in summer/autumn (n=27). The 25OHD levels were measured by radioimmunoassay. Disease activity was assessed by the Birmingham Vasculitis Activity Score Modified for Wegener’s Granulomatosis (BVAS/WG) and antineutrophil cytoplasmic antibody (ANCA) positivity. Respiratory infection was defined according the Centers for Disease Control and Prevention criteria. RESULTS: 25OHD levels were lower among patients in winter/spring than in summer/autumn (32.31±13.10 vs. 38.98±10.97 ng/mL, p=0.04). Seven patients met the criteria for respiratory infection: 5 in winter/spring and 2 in summer/autumn. Patients with respiratory infection presented lower 25OHD levels than those without infection (25.15±11.70 vs. 36.73±12.08 ng/mL, p=0.02). A higher frequency of low vitamin D levels (25OH

    Emergence of pseudogap from short-range spin-correlations in electron doped cuprates

    Get PDF
    Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matter as disparate as high-temperature superconductivity and charge- or magnetic-order. However, a comprehensive understanding of fundamental electronic properties of quantum materials is often complicated by the appearance of an enigmatic partial suppression of low-energy electronic states, known as the pseudogap. Here we take advantage of ultrafast angle-resolved photoemission spectroscopy to unveil the temperature evolution of the low-energy density of states in the electron-doped cuprate Nd2-x_{\text{2-x}}Cex_{\text{x}}CuO4_{\text{4}}, an emblematic system where the pseudogap intertwines with magnetic degrees of freedom. By photoexciting the electronic system across the pseudogap onset temperature T*, we report the direct relation between the momentum-resolved pseudogap spectral features and the spin-correlation length with an unprecedented sensitivity. This transient approach, corroborated by mean field model calculations, allows us to establish the pseudogap in electron-doped cuprates as a precursor to the incipient antiferromagnetic order even when long-range antiferromagnetic correlations are not established, as in the case of optimal doping.Comment: 17 pages, 3 figure

    Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

    Get PDF
    The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate superconductors, which are characterized by an intrinsically small phase-stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.Comment: 24 pages, 9 figures, Main Text and Supplementary Informatio

    Schild's Null Strings in Flat and Curved Backgrounds

    Get PDF
    Schild's null (tensionless) strings are discussed in certain flat and curved backgrounds. We find closed, stationary, null strings as natural configurations existing on the horizons of spacetimes which possess such null hypersurfaces. Examples of these are obtained in Schwarzschild and Rindler spacetimes. A dynamic null string is also identified in Rindler spacetime. Furthermore, a general prescription (with explicit examples) is outlined by means of which null string configurations can be obtained in a large class of cosmological backgrounds.Comment: RevTex 3.0, 14 Pages, no figure

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Gate-controlled Guiding of Electrons in Graphene

    Full text link
    Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronics, including magnetic focusing and lensing. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogs of optical devices having both positive and negative indices of refraction. Here, we use gate-controlled density with both p and n carrier types to demonstrate the analog of the fiber-optic guiding in graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding, based on the principle of angle-selective transmission though the graphene p-n interface, and (2) unipolar fiber-optic guiding, using total internal reflection controlled by carrier density. Modulation of guiding efficiency through gating is demonstrated and compared to numerical simulations, which indicates that interface roughness limits guiding performance, with few-nanometer effective roughness extracted. The development of p-n and fiber-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.Comment: supplementary materal at http://marcuslab.harvard.edu/papers/OG_SI.pd

    The optical/X-ray connection: ICM iron content and galaxy optical luminosity in 20 galaxy clusters

    Full text link
    X-ray observations of galaxy clusters have shown that the intra-cluster gas has iron abundances of about one third of the solar value. These observations also show that part (if not all) of the intra-cluster gas metals were produced within the member galaxies. We present a systematic analysis of 20 galaxy clusters to explore the connection between the iron mass and the total luminosity of early-type and late-type galaxies, and of the brightest cluster galaxies (BCGs). From our results, the intra-cluster medium (ICM) iron mass seems to correlate better with the luminosity of the BCGs than with that of the red and blue galaxy populations. As the BCGs cannot produce alone the observed amount of iron, we suggest that ram-pressure plus tidal stripping act together to enhance, at the same time, the BCG luminosities and the iron mass in the ICM. Through the analysis of the iron yield, we have also estimated that SN Ia are responsible for more than 50% of the total iron in the ICM. This result corroborates the fact that ram-pressure contributes to the gas removal from galaxies to the inta-cluster medium, being very efficient for clusters in the temperature range 2 < kT (keV)< 10Comment: Accepted for publication in MNRAS (11 pg, 9 figures and 3 tables

    Graphene as a quantum surface with curvature-strain preserving dynamics

    Full text link
    We discuss how the curvature and the strain density of the atomic lattice generate the quantization of graphene sheets as well as the dynamics of geometric quasiparticles propagating along the constant curvature/strain levels. The internal kinetic momentum of Riemannian oriented surface (a vector field preserving the Gaussian curvature and the area) is determined.Comment: 13p, minor correction
    corecore