One of the most interesting aspects of graphene is the tied relation between
structural and electronic properties. The observation of ripples in the
graphene samples both free standing and on a substrate has given rise to a very
active investigation around the membrane-like properties of graphene and the
origin of the ripples remains as one of the most interesting open problems in
the system. The interplay of structural and electronic properties is
successfully described by the modelling of curvature and elastic deformations
by fictitious gauge fields that have become an ex- perimental reality after the
suggestion that Landau levels can form associated to strain in graphene and the
subsequent experimental confirmation. Here we propose a device to detect
microstresses in graphene based on a scanning-tunneling-microscopy setup able
to measure Aharonov-Bohm inter- ferences at the nanometer scale. The
interferences to be observed in the local density of states are created by the
fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe