2,097 research outputs found
Efficient implementation of finite volume methods in Numerical Relativity
Centered finite volume methods are considered in the context of Numerical
Relativity. A specific formulation is presented, in which third-order space
accuracy is reached by using a piecewise-linear reconstruction. This
formulation can be interpreted as an 'adaptive viscosity' modification of
centered finite difference algorithms. These points are fully confirmed by 1D
black-hole simulations. In the 3D case, evidence is found that the use of a
conformal decomposition is a key ingredient for the robustness of black hole
numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.
Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems
In this paper we apply a finite difference lattice Boltzmann model to study
the phase separation in a two-dimensional liquid-vapor system. Spurious
numerical effects in macroscopic equations are discussed and an appropriate
numerical scheme involving flux limiter techniques is proposed to minimize them
and guarantee a better numerical stability at very low viscosity. The phase
separation kinetics is investigated and we find evidence of two different
growth regimes depending on the value of the fluid viscosity as well as on the
liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A systematic review
International audienceOBJECTIVE: Pelvic exenteration requires complete resection of the tumor with negative margins to be considered a curative surgery. The purpose of this review is to assess the optimal preoperative evaluation and surgical approach in patients with recurrent cervical cancer to increase the chances of achieving a curative surgery with decreased morbidity and mortality in the era of concurrent chemoradiotherapy. METHODS: Review of English publications pertaining to cervical cancer within the last 25 years were included using PubMed and Cochrane Library searches. RESULTS: Modern imaging (MRI and PET-CT) does not accurately identify local extension of microscopic disease and is inadequate for preoperative planning of extent of resection. Today, only half of pelvic exenteration procedures obtain uninvolved surgical margins. CONCLUSION: Clear margins are required for curative pelvic exenterations, but are poorly predictable by pre-operative assessment. More extensive surgery, i.e. the infra-elevator exenteration with vulvectomy, is a logical surgical choice to increase the rate of clear margins and to improve patient survival following surgery for recurrent cervical carcinoma
Head-on collisions of binary white dwarf--neutron stars: Simulations in full general relativity
We simulate head-on collisions from rest at large separation of binary white
dwarf -- neutron stars (WDNSs) in full general relativity. Our study serves as
a prelude to our analysis of the circular binary WDNS problem. We focus on
compact binaries whose total mass exceeds the maximum mass that a cold
degenerate star can support, and our goal is to determine the fate of such
systems. A fully general relativistic hydrodynamic computation of a realistic
WDNS head-on collision is prohibitive due to the large range of dynamical time
scales and length scales involved. For this reason, we construct an equation of
state (EOS) which captures the main physical features of NSs while, at the same
time, scales down the size of WDs. We call these scaled-down WD models
"pseudo-WDs (pWDs)". Using pWDs, we can study these systems via a sequence of
simulations where the size of the pWD gradually increases toward the realistic
case. We perform two sets of simulations; One set studies the effects of the NS
mass on the final outcome, when the pWD is kept fixed. The other set studies
the effect of the pWD compaction on the final outcome, when the pWD mass and
the NS are kept fixed. All simulations show that 14%-18% of the initial total
rest mass escapes to infinity. All remnant masses still exceed the maximum rest
mass that our cold EOS can support (1.92 solar masses), but no case leads to
prompt collapse to a black hole. This outcome arises because the final
configurations are hot. All cases settle into spherical, quasiequilibrium
configurations consisting of a cold NS core surrounded by a hot mantle,
resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD
compactions, we predict that the likely outcome of a head-on collision of a
realistic, massive WDNS system will be the formation of a quasiequilibrium
Thorne-Zytkow-like object.Comment: 24 pages, 14 figures, matches PRD published version, tests of HRSC
schemes with piecewise polytropes adde
On the hierarchy of partially invariant submodels of differential equations
It is noticed, that partially invariant solution (PIS) of differential
equations in many cases can be represented as an invariant reduction of some
PIS of the higher rank. This introduce a hierarchic structure in the set of all
PISs of a given system of differential equations. By using this structure one
can significantly decrease an amount of calculations required in enumeration of
all PISs for a given system of partially differential equations. An equivalence
of the two-step and the direct ways of construction of PISs is proved. In this
framework the complete classification of regular partially invariant solutions
of ideal MHD equations is given
A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method
This paper deals with a new solid-fluid coupling algorithm between a rigid
body and an unsteady compressible fluid flow, using an Embedded Boundary
method. The coupling with a rigid body is a first step towards the coupling
with a Discrete Element method. The flow is computed using a Finite Volume
approach on a Cartesian grid. The expression of numerical fluxes does not
affect the general coupling algorithm and we use a one-step high-order scheme
proposed by Daru and Tenaud [Daru V,Tenaud C., J. Comput. Phys. 2004]. The
Embedded Boundary method is used to integrate the presence of a solid boundary
in the fluid. The coupling algorithm is totally explicit and ensures exact mass
conservation and a balance of momentum and energy between the fluid and the
solid. It is shown that the scheme preserves uniform movement of both fluid and
solid and introduces no numerical boundary roughness. The effciency of the
method is demonstrated on challenging one- and two-dimensional benchmarks
Direct sequencing of hepatitis A virus strains isolated during an epidemic in France
Direct sequencing of PCR products was used to study the VP1 region of the hepatitis A virus (HAV) genome (position 2199 to 2356) of nine strains isolated from human stools collected during a hepatitis A epidemic (western France, 1992), three strains from environmental samples (1990, 1991, and 1992), and two HAV cell culture isolates (the French strain CF53/Lyon and strain CLF). These viruses differed from CF53/Lyon (genotype I) by between 1 and 10.3%, and results indicated the existence of two groups of strains belonging to two different subgenotypes (IA and IB). With this sequencing technique it was possible to monitor the epidemiology of HAV and study its relations
On the scaling of entropy viscosity in high order methods
In this work, we outline the entropy viscosity method and discuss how the
choice of scaling influences the size of viscosity for a simple shock problem.
We present examples to illustrate the performance of the entropy viscosity
method under two distinct scalings
An Analytical Framework to Describe the Interactions Between Individuals and a Continuum
We consider a discrete set of individual agents interacting with a continuum.
Examples might be a predator facing a huge group of preys, or a few shepherd
dogs driving a herd of sheeps. Analytically, these situations can be described
through a system of ordinary differential equations coupled with a scalar
conservation law in several space dimensions. This paper provides a complete
well posedness theory for the resulting Cauchy problem. A few applications are
considered in detail and numerical integrations are provided
Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence
We propose and verify a wave-vector-space version of generalized extended
self similarity and broaden its applicability to uncover intriguing, universal
scaling in the far dissipation range by computing high-order (\leq 20\/)
structure functions numerically for: (1) the three-dimensional, incompressible
Navier Stokes equation (with and without hyperviscosity); and (2) the GOY shell
model for turbulence. Also, in case (2), with Taylor-microscale Reynolds
numbers 4 \times 10^{4} \leq Re_{\lambda} \leq 3 \times 10^{6}\/, we find
that the inertial-range exponents (\zeta_{p}\/) of the order - p\/
structure functions do not approach their Kolmogorov value p/3\/ as
Re_{\lambda}\/ increases.Comment: RevTeX file, with six postscript figures. epsf.tex macro is used for
figure insertion. Packaged using the 'uufiles' utilit
- …