2,097 research outputs found

    Efficient implementation of finite volume methods in Numerical Relativity

    Full text link
    Centered finite volume methods are considered in the context of Numerical Relativity. A specific formulation is presented, in which third-order space accuracy is reached by using a piecewise-linear reconstruction. This formulation can be interpreted as an 'adaptive viscosity' modification of centered finite difference algorithms. These points are fully confirmed by 1D black-hole simulations. In the 3D case, evidence is found that the use of a conformal decomposition is a key ingredient for the robustness of black hole numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.

    Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems

    Full text link
    In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.

    Curative pelvic exenteration for recurrent cervical carcinoma in the era of concurrent chemotherapy and radiation therapy. A systematic review

    No full text
    International audienceOBJECTIVE: Pelvic exenteration requires complete resection of the tumor with negative margins to be considered a curative surgery. The purpose of this review is to assess the optimal preoperative evaluation and surgical approach in patients with recurrent cervical cancer to increase the chances of achieving a curative surgery with decreased morbidity and mortality in the era of concurrent chemoradiotherapy. METHODS: Review of English publications pertaining to cervical cancer within the last 25 years were included using PubMed and Cochrane Library searches. RESULTS: Modern imaging (MRI and PET-CT) does not accurately identify local extension of microscopic disease and is inadequate for preoperative planning of extent of resection. Today, only half of pelvic exenteration procedures obtain uninvolved surgical margins. CONCLUSION: Clear margins are required for curative pelvic exenterations, but are poorly predictable by pre-operative assessment. More extensive surgery, i.e. the infra-elevator exenteration with vulvectomy, is a logical surgical choice to increase the rate of clear margins and to improve patient survival following surgery for recurrent cervical carcinoma

    Head-on collisions of binary white dwarf--neutron stars: Simulations in full general relativity

    Full text link
    We simulate head-on collisions from rest at large separation of binary white dwarf -- neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of NSs while, at the same time, scales down the size of WDs. We call these scaled-down WD models "pseudo-WDs (pWDs)". Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92 solar masses), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.Comment: 24 pages, 14 figures, matches PRD published version, tests of HRSC schemes with piecewise polytropes adde

    On the hierarchy of partially invariant submodels of differential equations

    Full text link
    It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. In this framework the complete classification of regular partially invariant solutions of ideal MHD equations is given

    A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method

    Get PDF
    This paper deals with a new solid-fluid coupling algorithm between a rigid body and an unsteady compressible fluid flow, using an Embedded Boundary method. The coupling with a rigid body is a first step towards the coupling with a Discrete Element method. The flow is computed using a Finite Volume approach on a Cartesian grid. The expression of numerical fluxes does not affect the general coupling algorithm and we use a one-step high-order scheme proposed by Daru and Tenaud [Daru V,Tenaud C., J. Comput. Phys. 2004]. The Embedded Boundary method is used to integrate the presence of a solid boundary in the fluid. The coupling algorithm is totally explicit and ensures exact mass conservation and a balance of momentum and energy between the fluid and the solid. It is shown that the scheme preserves uniform movement of both fluid and solid and introduces no numerical boundary roughness. The effciency of the method is demonstrated on challenging one- and two-dimensional benchmarks

    Direct sequencing of hepatitis A virus strains isolated during an epidemic in France

    Get PDF
    Direct sequencing of PCR products was used to study the VP1 region of the hepatitis A virus (HAV) genome (position 2199 to 2356) of nine strains isolated from human stools collected during a hepatitis A epidemic (western France, 1992), three strains from environmental samples (1990, 1991, and 1992), and two HAV cell culture isolates (the French strain CF53/Lyon and strain CLF). These viruses differed from CF53/Lyon (genotype I) by between 1 and 10.3%, and results indicated the existence of two groups of strains belonging to two different subgenotypes (IA and IB). With this sequencing technique it was possible to monitor the epidemiology of HAV and study its relations

    On the scaling of entropy viscosity in high order methods

    Full text link
    In this work, we outline the entropy viscosity method and discuss how the choice of scaling influences the size of viscosity for a simple shock problem. We present examples to illustrate the performance of the entropy viscosity method under two distinct scalings

    An Analytical Framework to Describe the Interactions Between Individuals and a Continuum

    Full text link
    We consider a discrete set of individual agents interacting with a continuum. Examples might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd of sheeps. Analytically, these situations can be described through a system of ordinary differential equations coupled with a scalar conservation law in several space dimensions. This paper provides a complete well posedness theory for the resulting Cauchy problem. A few applications are considered in detail and numerical integrations are provided

    Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence

    Full text link
    We propose and verify a wave-vector-space version of generalized extended self similarity and broaden its applicability to uncover intriguing, universal scaling in the far dissipation range by computing high-order (\leq 20\/) structure functions numerically for: (1) the three-dimensional, incompressible Navier Stokes equation (with and without hyperviscosity); and (2) the GOY shell model for turbulence. Also, in case (2), with Taylor-microscale Reynolds numbers 4 \times 10^{4} \leq Re_{\lambda} \leq 3 \times 10^{6}\/, we find that the inertial-range exponents (\zeta_{p}\/) of the order - p\/ structure functions do not approach their Kolmogorov value p/3\/ as Re_{\lambda}\/ increases.Comment: RevTeX file, with six postscript figures. epsf.tex macro is used for figure insertion. Packaged using the 'uufiles' utilit
    corecore