178 research outputs found

    The Chickpea, Summer Cropping, and a New Model for Pulse Domestication in the Ancient Near East

    Get PDF
    The widely accepted models describing the emergence of domesticated grain crops from their wild type ancestors are mostly based upon selection (conscious or unconscious) of major features related either to seed dispersal (nonbrittle ear, indehiscent pod) or free germination (nondormant seeds, soft seed coat). Based on the breeding systems (self-pollination) and dominance relations between the allelomorphs of seed dispersal mode and seed dormancy, it was postulated that establishment of the domesticated forms and replacement of the wild ancestral populations occurred in the Near East within a relatively short time. Chickpea (Cicer arietinum L.), however, appears as an exception among all other ā€œfounder cropsā€ of Old World agriculture because of its ancient conversion into a summer crop. The chickpea is also exceptional because its major domestication trait appears to be vernalization insensitivity rather than pod indehiscence or free germination. Moreover, the genetic basis of vernalization response in wild chickpea (Cicer reticulatum Ladiz.) is polygenic, suggesting that a long domestication process was imperative due to the elusive phenotype of vernalization nonresponsiveness. There is also a gap in chickpea remains in the archaeological record between the Late Prepottery Neolithic and the Early Bronze Age. Contrary to the common view that Levantine summer cropping was introduced relatively late (Early Bronze Age), we argue for an earlier (Neolithic) Levantine origin of summer cropping because chickpea, when grown as a common winter crop, was vulnerable to the devastating pathogen Didymella rabiei, the causal agent of Ascochyta blight. The ancient (Neolithic) conversion of chickpea into a summer crop required seasonal differentiation of agronomic operation from the early phases of the Neolithic revolution. This topic is difficult to deal with, as direct data on seasonality in prehistoric Old World field crop husbandry are practically nonexistent. Consequently, this issue was hardly dealt with in the literature. Information on the seasonality of ancient (Neolithic, Chalcolithic, and Early Bronze Age, calibrated 11,500 to 4,500 years before present) Near Eastern agriculture may improve our understanding of the proficiency of early farmers. This in turn may provide a better insight into Neolithic agrotechniques and scheduling. It is difficult to fully understand chickpea domestication without a Neolithic seasonal differentiation of agronomic practice because the rapid establishment of the successful Near Eastern crop package which included wheats, barley, pea, lentil, vetches, and flax, would have preempted the later domestication of this rare wild legume

    Gibberellic acid (GA) increases fibre cell differentiation and secondary cell-wall deposition in spring wheat (Triticum aestivum L.) culms

    Get PDF
    Abstract The role of gibberellic acid (GA) in differentiation and secondary cell-wall deposition of fibre cells of spring wheat (Triticum aestivum) culms was studied using applications of GA and chlormequat (a GA biosynthesis inhibitor). In certain genotypes, higher GA levels may increase the number of cortical fibre cell files by changing cell fate from parenchyma to fibre, and induce thicker secondary cell-walls

    Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh

    Get PDF
    Arabidopsis thaliana is a model plant used in analysis of different aspects of plant growth and development. Under suitable conditions, secondary growth takes place in the hypocotyl of Arabidopsis plants, a finding which helps in understanding many aspects of xylogenesis. However, not all developmental processes of secondary tissue can be studied here, as no secondary rays and intrusive growth have been detected in hypocotyl. However, results presented here concerning the secondary growth in inflorescence stems of Arabidopsis shows that both secondary rays and intrusive growth of cambial cells can be detected, and that, in the interfascicular regions, a storied cambium can be developed

    Distribution and Extinction of Ungulates during the Holocene of the Southern Levant

    Get PDF
    BACKGROUND: The southern Levant (Israel, Palestinian Authority and Jordan) has been continuously and extensively populated by succeeding phases of human cultures for the past 15,000 years. The long human impact on the ancient landscape has had great ecological consequences, and has caused continuous and accelerating damage to the natural environment. The rich zooarchaeological data gathered at the area provide a unique opportunity to reconstruct spatial and temporal changes in wild species distribution, and correlate them with human demographic changes. METHODOLOGY: Zoo-archaeological data (382 animal bone assemblages from 190 archaeological sites) from various time periods, habitats and landscapes were compared. The bone assemblages were sorted into 12 major cultural periods. Distribution maps showing the presence of each ungulate species were established for each period. CONCLUSIONS: The first major ungulate extinction occurred during the local Iron Age (1,200-586 BCE), a period characterized by significant human population growth. During that time the last of the largest wild ungulates, the hartebeest (Alcelaphus buselaphus), aurochs (Bos primigenius) and the hippopotamus (Hippopotamus amphibius) became extinct, followed by a shrinking distribution of forest-dwelling cervids. A second major wave of extinction occurred only in the 19th and 20th centuries CE. Furthermore, a negative relationship was found between the average body mass of ungulate species that became extinct during the Holocene and their extinction date. It is thus very likely that the intensified human activity through habitat destruction and uncontrolled hunting were responsible for the two major waves of ungulate extinction in the southern Levant during the late Holocene

    Defining an Adequate Sample of Earlywood Vessels for Retrospective Injury Detection in Diffuse-Porous Species

    Get PDF
    Vessels of broad-leaved trees have been analyzed to study how trees deal with various environmental factors. Cambial injury, in particular, has been reported to induce the formation of narrower conduits. Yet, little or no effort has been devoted to the elaboration of vessel sampling strategies for retrospective injury detection based on vessel lumen size reduction. To fill this methodological gap, four wounded individuals each of grey alder (Alnus incana (L.) Moench) and downy birch (Betula pubescens Ehrh.) were harvested in an avalanche path. Earlywood vessel lumina were measured and compared for each tree between the injury ring built during the growing season following wounding and the control ring laid down the previous year. Measurements were performed along a 10 mm wide radial strip, located directly next to the injury. Specifically, this study aimed at (i) investigating the intra-annual duration and local extension of vessel narrowing close to the wound margin and (ii) identifying an adequate sample of earlywood vessels (number and intra-ring location of cells) attesting to cambial injury. Based on the results of this study, we recommend analyzing at least 30 vessels in each ring. Within the 10 mm wide segment of the injury ring, wound-induced reduction in vessel lumen size did not fade with increasing radial and tangential distances, but we nevertheless advise favoring early earlywood vessels located closest to the injury. These findings, derived from two species widespread across subarctic, mountainous, and temperate regions, will assist retrospective injury detection in Alnus, Betula, and other diffuse-porous species as well as future related research on hydraulic implications after wounding

    Genetic structure and differentiation in cultivated fig (Ficus carica L.)

    Get PDF
    One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (HG/HTĀ =Ā 0.853; 85.3%) and the among groups within total component (GGTĀ =Ā 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (GGCĀ =Ā 0.094) and ~36% among clusters (GCTĀ =Ā 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig

    Studying the Functional Genomics of Stress Responses in Loblolly Pine With the Expresso Microarray Experiment Management System

    Get PDF
    Conception, design, and implementation of cDNA microarray experiments present a variety of bioinformatics challenges for biologists and computational scientists. The multiple stages of data acquisition and analysis have motivated the design of Expresso, a system for microarray experiment management. Salient aspects of Expresso include support for clone replication and randomized placement; automatic gridding, extraction of expression data from each spot, and quality monitoring; flexible methods of combining data from individual spots into information about clones and functional categories; and the use of inductive logic programming for higher-level data analysis and mining. The development of Expresso is occurring in parallel with several generations of microarray experiments aimed at elucidating genomic responses to drought stress in loblolly pine seedlings. The current experimental design incorporates 384 pine cDNAs replicated and randomly placed in two specific microarray layouts. We describe the design of Expresso as well as results of analysis with Expresso that suggest the importance of molecular chaperones and membrane transport proteins in mechanisms conferring successful adaptation to long-term drought stress

    Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology

    Get PDF
    Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains māˆ’2, grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of todayā€™s free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat ā€˜Fornoā€™ Ɨ European spelt ā€˜Oberkulmerā€™ recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains māˆ’2, grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains māˆ’2, and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy
    • ā€¦
    corecore