14 research outputs found

    Quantification of global myocardial oxygenation in humans: initial experience

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess the feasibility of our newly developed cardiovascular magnetic resonance (CMR) methods to quantify global and/or regional myocardial oxygen consumption rate (MVO<sub>2</sub>) at rest and during pharmacologically-induced vasodilation in normal volunteers.</p> <p>Methods</p> <p>A breath-hold T<sub>2 </sub>quantification method is developed to calculate oxygen extraction fraction (OEF) and MVO<sub>2 </sub>rate at rest and/or during hyperemia, using a two-compartment model. A previously reported T<sub>2 </sub>quantification method using turbo-spin-echo sequence was also applied for comparison. CMR scans were performed in 6 normal volunteers. Each imaging session consisted of imaging at rest and during adenosine-induced vasodilation. The new T<sub>2 </sub>quantification method was applied to calculate T<sub>2 </sub>in the coronary sinus (CS), as well as in myocardial tissue. Resting CS OEF, representing resting global myocardial OEF, and myocardial OEF during adenosine vasodilation were then calculated by the model. Myocardial blood flow (MBF) was also obtained to calculate MVO<sub>2</sub>, by using a first-pass perfusion imaging approach.</p> <p>Results</p> <p>The T<sub>2 </sub>quantification method yielded a hyperemic OEF of 0.37 ± 0.05 and a hyperemic MVO<sub>2 </sub>of 9.2 ± 2.4 μmol/g/min. The corresponding resting values were 0.73 ± 0.05 and 5.2 ± 1.7 μmol/g/min respectively, which agreed well with published literature values. The MVO<sub>2 </sub>rose proportionally with rate-pressure product from the rest condition. The T<sub>2 </sub>sensitivity is approximately 95% higher with the new T<sub>2 </sub>method than turbo-spin-echo method.</p> <p>Conclusion</p> <p>The CMR oxygenation method demonstrates the potential for non-invasive estimation of myocardial oxygenation, and should be explored in patients with altered myocardial oxygenation.</p

    An experimental study of executive function and social impairment in Cornelia de Lange syndrome

    Get PDF
    Background Extreme shyness and social anxiety is reported to be characteristic of adolescents and adults with Cornelia de Lange syndrome (CdLS); however, the nature of these characteristics is not well documented. In this study, we develop and apply an experimental assessment of social anxiety in a group of adolescents and adults with CdLS to determine the nature of the social difficulties and whether they are related to impairments in executive functioning. Methods A familiar and unfamiliar examiner separately engaged in socially demanding tasks comprising three experimental conditions with a group of individuals with CdLS (n = 25; % male = 44; mean age = 22.16; SD = 8.81) and a comparable group of individuals with Down syndrome (DS; n = 20; % male = 35; mean age = 24.35; SD = 5.97). Behaviours indicative of social anxiety were coded. The Behavior Rating Inventory of Executive Function-Preschool version, an informant measure of executive function, was completed by participants’ caregivers. Results Significantly less verbalisation was observed in the CdLS group than the DS group in conditions requiring the initiation of speech. In the CdLS group, impairments in verbalisation were not associated with a greater degree of intellectual disability but were significantly correlated with impairments in both planning and working memory. This association was not evident in the DS group. Conclusions Adolescents and adults with CdLS have a specific difficulty with the initiation of speech when social demands are placed upon them. This impairment in verbalisation may be underpinned by specific cognitive deficits, although further research is needed to investigate this fully

    Interleukin-8/CXCR2 signaling regulates therapy-induced plasticity and enhances tumorigenicity in glioblastoma

    Get PDF
    Abstract Emerging evidence reveals enrichment of glioma-initiating cells (GICs) following therapeutic intervention. One factor known to contribute to this enrichment is cellular plasticity—the ability of glioma cells to attain multiple phenotypes. To elucidate the molecular mechanisms governing therapy-induced cellular plasticity, we performed genome-wide chromatin immunoprecipitation sequencing (ChIP-Seq) and gene expression analysis (gene microarray analysis) during treatment with standard of care temozolomide (TMZ) chemotherapy. Analysis revealed significant enhancement of open-chromatin marks in known astrocytic enhancers for interleukin-8 (IL-8) loci as well as elevated expression during anti-glioma chemotherapy. The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project data demonstrated that IL-8 transcript expression is negatively correlated with GBM patient survival (p = 0.001) and positively correlated with that of genes associated with the GIC phenotypes, such as KLF4, c-Myc, and HIF2α (p < 0.001). Immunohistochemical analysis of patient samples demonstrated elevated IL-8 expression in about 60% of recurrent GBM tumors relative to matched primary tumors and this expression also positively correlates with time to recurrence. Exposure to IL-8 significantly enhanced the self-renewing capacity of PDX GBM (average threefold, p < 0.0005), as well as increasing the expression of GIC markers in the CXCR2 population. Furthermore, IL-8 knockdown significantly delayed PDX GBM tumor growth in vivo (p < 0.0005). Finally, guided by in silico analysis of TCGA data, we examined the effect of therapy-induced IL-8 expression on the epigenomic landscape of GBM cells and observed increased trimethylation of H3K9 and H3K27. Our results show that autocrine IL-8 alters cellular plasticity and mediates alterations in histone status. These findings suggest that IL-8 signaling participates in regulating GBM adaptation to therapeutic stress and therefore represents a promising target for combination with conventional chemotherapy in order to limit GBM recurrence

    Advanced nanotherapies to promote neuroregeneration in the injured newborn brain

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore