150 research outputs found
Feasibility study of the solar scientific instruments for Spacelab/Orbiter
The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab
Reduced cortical thickness with increased lifetime burden of PTSD in OEF/OIF Veterans and the impact of comorbid TBIâ
Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) in military personnel is increasing dramatically following the OEF/OIF conflicts and is associated with alterations to brain structure. The present study examined the relationship between PTSD and cortical thickness, and its possible modification by mTBI, in a 104-subject OEF/OIF veteran cohort ranging in age from 20 to 62 years. For each participant, two T1-weighted scans were averaged to create high-resolution images for calculation of regional cortical thickness. PTSD symptoms were assessed using the Clinician Administered PTSD Scale (CAPS) and scores were derived based on the previous month's symptoms (âcurrentâ) and a Cumulative Lifetime Burden of PTSD (CLB-P) reflecting the integral of CAPS scores across the lifetime. Mild TBI was diagnosed using the Boston Assessment of TBI-Lifetime (BAT-L). Results demonstrated a clear negative relationship between current PTSD severity and thickness in both postcentral gyri and middle temporal gyri. This relationship was stronger and more extensive when considering lifetime burden (CLB-P), demonstrating the importance of looking at trauma in the context of an individual's lifetime, rather than only at their current symptoms. Finally, interactions with current PTSD only and comorbid current PTSD and mTBI were found in several regions, implying an additive effect of lifetime PTSD and mTBI on cortical thickness
Cardio-metabolic risk factors and cortical thickness in a neurologically healthy male population: results from the psychological, social and biological determinants of ill health (pSoBid) study
<p>Introduction: Cardio-metabolic risk factors have been associated with poor physical and mental health. Epidemiological studies have shown peripheral risk markers to be associated with poor cognitive functioning in normal healthy population and in disease. The aim of the study was to explore the relationship between cardio-metabolic risk factors and cortical thickness in a neurologically healthy middle aged population-based sample.</p>
<p>Methods: T1-weighted MRI was used to create models of the cortex for calculation of regional cortical thickness in 40 adult males (average age = 50.96 years), selected from the PSOBID study. The relationship between cardio-vascular risk markers and cortical thickness across the whole brain, were examined using the general linear models. The relationship with various covariates of interest was explored.</p>
<p>Results: Lipid fractions with greater triglyceride content (TAG, VLDL and LDL) were associated with greater cortical thickness pertaining to a number of regions in the brain. Greater C reactive protein (CRP) and Intercellular adhesion molecule (ICAM-1) levels were associated with cortical thinning pertaining to perisylvian regions in the left hemisphere. Smoking status and education status were significant covariates in the model.</p>
<p>Conclusions: This exploratory study adds to a small body of existing literature increasingly showing a relationship between cardio-metabolic risk markers and regional cortical thickness involving a number of regions in the brain in a neurologically normal middle aged sample. A focused investigation of factors determining the inter-individual variations in regional cortical thickness in the adult brain could provide further clarity in our understanding of the relationship between cardio-metabolic factors and cortical structures.</p>
Brain structure across the lifespan : the influence of stress and mood
Normal brain aging is an inevitable and heterogeneous process characterized by a selective pattern of structural changes. Such heterogeneity arises as a consequence of cumulative effects over the lifespan, including stress and mood effects, which drive different micro- and macro-structural alterations in the brain. Investigating these differences in healthy age-related changes is a major challenge for the comprehension of the cognitive status. Herein we addressed the impact of normal aging, stress, mood, and their interplay in the brain gray and white matter (WM) structure. We showed the critical impact of age in the WM volume and how stress and mood influence brain volumetry across the lifespan. Moreover, we found a more profound effect of the interaction of aging/stress/mood on structures located in the left hemisphere. These findings help to clarify some divergent results associated with the aging decline and to enlighten the association between abnormal volumetric alterations and several states that may lead to psychiatric disorders.We are thankful to all study participants. This work was funded by the European Commission (FP7): "SwitchBox" (Contract HEALTH-F2-2010-259772) and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Jose M. Soares, Paulo Marques, and Nadine C. Santos are supported by fellowships of the project "SwitchBox"; Ricardo Magalhaes is supported by a fellowship from the project FCTANR/NEU-OSD/0258/2012 funded by FCT/MEC (www.fct.pt) and by ON.2 - ONOVONORTE - North - Portugal Regional Operational Programme 2007/2013, of the National Strategic Reference Framework (NSRF) 2007/2013, through FEDER
Rationale, design and methodology of the image analysis protocol for studies of patients with cerebral small vessel disease and mild stroke
Rationale: Cerebral small vessel disease (SVD) is common in ageing and patients with dementia and stroke. Its manifestations on magnetic resonance imaging (MRI) include white matter hyperintensities, lacunes, microbleeds, perivascular spaces, small subcortical infarcts, and brain atrophy. Many studies focus only on one of these manifestations. A protocol for the differential assessment of all these features is, therefore, needed.
Aims: To identify ways of quantifying imaging markers in research of patients with SVD and operationalize the recommendations from the STandards for ReportIng Vascular changes on nEuroimaging guidelines. Here, we report the rationale, design, and methodology of a brain image analysis protocol based on our experience from observational longitudinal studies of patients with nondisabling stroke.
Design: The MRI analysis protocol is designed to provide quantitative and qualitative measures of disease evolution including: acute and old stroke lesions, lacunes, tissue loss due to stroke, perivascular spaces, microbleeds, macrohemorrhages, iron deposition in basal ganglia, substantia nigra and brain stem, brain atrophy, and white matter hyperintensities, with the latter separated into intense and less intense. Quantitative measures of tissue integrity such as diffusion fractional anisotropy, mean diffusivity, and the longitudinal relaxation time are assessed in regions of interest manually placed in anatomically and functionally relevant locations, and in others derived from feature extraction pipelines and tissue segmentation methods. Morphological changes that relate to cognitive deficits after stroke, analyzed through shape models of subcortical structures, complete the multiparametric image analysis protocol.
Outcomes: Final outcomes include guidance for identifying ways to minimize bias and confounds in the assessment of SVD and stroke imaging biomarkers. It is intended that this information will inform the design of studies to examine the underlying pathophysiology of SVD and stroke, and to provide reliable, quantitative outcomes in trials of new therapies and preventative strategies
Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease.
Cerebral small vessel disease (SVD) is a heterogeneous group of pathological disorders that affect the small vessels of the brain and are an important cause of cognitive impairment. The ischaemic consequences of this disease can be detected using MRI, and include white matter hyperintensities (WMH), lacunar infarcts and microhaemorrhages. The relationship between SVD disease severity, as defined by WMH volume, in sporadic age-related SVD and cortical thickness has not been well defined. However, regional cortical thickness change would be expected due to associated phenomena such as underlying ischaemic white matter damage, and the observation that widespread cortical thinning is observed in the related genetic condition CADASIL (Righart et al., 2013). Using MRI data, we have developed a semi-automated processing pipeline for the anatomical analysis of individuals with cerebral small vessel disease and applied it cross-sectionally to 121 subjects diagnosed with this condition. Using a novel combined automated white matter lesion segmentation algorithm and lesion repair step, highly accurate warping to a group average template was achieved. The volume of white matter affected by WMH was calculated, and used as a covariate of interest in a voxel-based morphometry and voxel-based cortical thickness analysis. Additionally, Gaussian Process Regression (GPR) was used to assess if the severity of SVD, measured by WMH volume, could be predicted from the morphometry and cortical thickness measures. We found significant (Family Wise Error corrected p < 0.05) volumetric decline with increasing lesion load predominately in the parietal lobes, anterior insula and caudate nuclei bilaterally. Widespread significant cortical thinning was found bilaterally in the dorsolateral prefrontal, parietal and posterio-superior temporal cortices. These represent distinctive patterns of cortical thinning and volumetric reduction compared to ageing effects in the same cohort, which exhibited greater changes in the occipital and sensorimotor cortices. Using GPR, the absolute WMH volume could be significantly estimated from the grey matter density and cortical thickness maps (Pearson's coefficients 0.80 and 0.75 respectively). We demonstrate that SVD severity is associated with regional cortical thinning. Furthermore a quantitative measure of SVD severity (WMH volume) can be predicted from grey matter measures, supporting an association between white and grey matter damage. The pattern of cortical thinning and volumetric decline is distinctive for SVD severity compared to ageing. These results, taken together, suggest that there is a phenotypic pattern of atrophy associated with SVD severity
Why are some Parkinsonâs disease patients unaware of their dyskinesias?
Original article can be found at: http://journals.lww.com/cogbehavneurol/ Copyright Lippincott, Williams & WilkinsObjective : To test the hypothesis that anosognosia-for-dyskinesias in Parkinsonâs disease (PD) results from a failure to detect discrepancies between intended and actual movement. Background : PD patients often complain of drug-induced dyskinesias (involuntary movements) less than their carers. This remarkable unawareness is an example of anosognosia (i.e., unawareness of deficits associated with an illness). A better understanding of anosognosia-for-dyskinesias in PD is important to understanding the impact of the illness and side effects of treatment. Method : The ability to detect a discrepancy between intended movement and visual feedback about actual ovement was investigated in 6 PD patients with anosognosia-for-dyskinesias, 11 non-anosognosic PD controls with dyskinesias, and 22 healthy volunteers (HVs), using a mirror to reverse the expected visual consequences of an executed movement. Results : Non-anosognosic PD patients and HVs rated mirror-reversed movement as significantly stranger than normal movement (p=.024 and <.001 respectively), whereas PD patients with anosognosia-for-dyskinesias did not (p=.375). Conclusion: The findings support our proposal, in that PD patients with anosognosia-fordyskinesias do not report mirror-reversed movement (in which intentions and visual feedback conflict) as feeling distinct from normal movement.Peer reviewe
- âŠ