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Normal brain aging is an inevitable and heterogeneous process characterized by a selective
pattern of structural changes. Such heterogeneity arises as a consequence of cumulative
effects over the lifespan, including stress and mood effects, which drive different micro-
and macro-structural alterations in the brain. Investigating these differences in healthy age-
related changes is a major challenge for the comprehension of the cognitive status. Herein
we addressed the impact of normal aging, stress, mood, and their interplay in the brain gray
and white matter (WM) structure. We showed the critical impact of age in the WM volume
and how stress and mood influence brain volumetry across the lifespan. Moreover, we
found a more profound effect of the interaction of aging/stress/mood on structures located
in the left hemisphere.These findings help to clarify some divergent results associated with
the aging decline and to enlighten the association between abnormal volumetric alterations
and several states that may lead to psychiatric disorders.
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INTRODUCTION
Normal brain aging is an inevitable, complex, and heterogeneous
process, characterized by a selective pattern of structural and func-
tional changes. With age, the whole brain itself and many of its
specific structures present volumetric alterations, mostly reduc-
tions, white matter (WM) becomes less dense and loses integrity
(Walhovd et al., 2011; Fjell et al., 2013). Specifically, “normal”
brain aging has been consistently characterized by a noted overall
atrophy associated with a decrease in brain volume and expan-
sion of the cerebrospinal fluid (CSF) spaces (Tamnes et al., 2013).
Although total brain volume is more correlated with age after
60 years old, gray matter (GM) volume decline may begin earlier
and progress gradually, frequently associated with neuronal cell
death, whereas WM may start later and progress more abruptly
accompanying the myelin sheath deteriorating after the fourth
decade of life (Dennis and Cabeza, 2008; Gunning-Dixon et al.,
2009; Lemaitre et al., 2012; Fjell et al., 2013; Tamnes et al., 2013).
Specifically, both GM and WM volumetric reductions seem to be
greater in the cortex than in subcortical structures, associated to
a greater spatial extent in WM, with the highest effects in GM
frontal lobe and in the WM superior and medial frontal and ante-
rior cingulate regions (Raz et al., 2005; Dennis and Cabeza, 2008;
Gunning-Dixon et al., 2009; Salat et al., 2009b; Voineskos et al.,
2010; Sala et al., 2012).

Notably, not only do such changes occur even in highly cog-
nitive functioning individuals (Tamnes et al., 2013; Meunier et al.,
2014), but during healthy aging, many domains become also less
efficient, and the brain tends to respond to all these neural changes
by engaging in continuous reorganizations to keep its home-
ostatic control and support cognitive functions, the so-termed
“brain plasticity” (Park and Reuter-Lorenz, 2009; Lovden et al.,
2013). Aging quality varies according to space (brain region), time

(lifespan phase), subject (individual parameters), and external
influences. Understanding and characterizing the structural brain
changes across the lifespan using magnetic resonance imaging
(MRI), taking into account the complex combination of distinct
life experience, amongst which the exposure to stressful experi-
ence and variations in mood are major factors, became one of the
most prominent challenges in the comprehension of the cognitive
function in middle/late ages.

Despite the limited information on the stress and mood-
induced structural alterations, most studies point to reduced
volumes in stressed participants in the anterior cingulate cor-
tex, hippocampus, and amygdala (van der Werff et al., 2013;
Lucassen et al., 2014). Smaller prefrontal and anterior cingulate
cortex volumes have also been observed in patients with major
depressive disorder (Frodl et al., 2008) and in participants with
prolonged stress (Blix et al., 2013; De Brito et al., 2013). Reduced
volumes in the hippocampus, caudate, and putamen have also
been reported in depressed subjects (Koolschijn et al., 2009; Kemp-
ton et al., 2011; van der Werff et al., 2013). Amygdala alterations
were also observed in studies reporting larger volumes related
with early stress exposure, including with hemispheric differ-
ences (Pruessner et al., 2010; van der Werff et al., 2013). On the
other hand, volume decreases in amygdala have also been asso-
ciated with early and late-onset depressed subjects (Burke et al.,
2011; van Uden et al., 2011). Importantly, we previously found
in young subjects that stress triggers an atrophy of the caudate
and the orbitofrontal cortex, but a hypertrophy of the putamen,
changes that were shown to be reversible and accompanied by a
functional reorganization after a stress-free period (Soares et al.,
2012). Curiously, there is a very limited amount of information
regarding the stress and mood-effects on structural aspects on
the WM.
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Herein we addressed the impact of normal aging, stress, mood
and their interplay in the brain GM and WM structure.

MATERIALS AND METHODS
ETHICS STATEMENT
The present study was conducted in accordance with the principles
expressed in the Declaration of Helsinki and was approved by the
Ethics Committee of Hospital de Braga (Portugal). The study goals
and tests were explained to all participants and all gave informed
written consent.

PARTICIPANTS, PSYCHOLOGICAL TESTS, AND CORTISOL
MEASUREMENTS
This study assessed a sample of 104 participants [52 males
and 52 females, mean age 65.20 ± 8.07, minimum age 51,
and maximum 82, 5.43 ± 3.84 mean years of education and
mean of 26.66 ± 3.30 Mini-Mental State Examination (MMSE;
Folstein et al., 1975)] selected from a representative sample of the
Portuguese population in terms of age, gender, and education,
of the SWITCHBOX Consortium project (Santos et al., 2013).
Participants responded to a laterality test and to a question-
naire regarding perceived stress (Perceived Stress Scale – PSS;
mean 21.49 ± 8.18; Cohen et al., 1983). Participants were fur-
ther assessed with the Geriatric Depression Scale (GDS, long
version; mean 10.91 ± 6.70; Yesavage et al., 1982) by a certified
psychologist.

DATA ACQUISITION AND PROCESSING
Participants were scanned on a clinical approved Siemens Mag-
netom Avanto 1.5 T (Siemens Medical Solutions, Erlangen, Ger-
many) at Hospital de Braga using the Siemens 12-channel receive-
only head coil. The imaging session included one structural T1
high-resolution anatomical sequence, 3D MPRAGE (magnetiza-
tion prepared rapid gradient echo). This protocol was performed
with the following scan parameters: repetition time (TR) = 2.730 s,
echo time (TE) = 3.48 ms, 176 sagittal slices with no gap, flip
angle (FA) = 7◦, in-plane resolution = 1.0 mm× 1.0 mm and slice
thickness = 1.0 mm.

Before any data processing and analysis, all acquisitions were
visually inspected by a certified neuroradiologist and confirmed
that participants had no brain lesions and the acquisitions were
not affected by critical head motion. Seven participants were
excluded from the analysis based on the head motion and/or brain
lesions.

Structural analysis based on segmentation of brain cortical
and subcortical structures from T1 high-resolution anatomi-
cal data was performed using the Freesurfer toolkit version
5.1 (https://surfer.nmr.mgh.harvard.edu) running on an Ubuntu
12.04 LTS system. This software package implements a semi-
automated segmentation workflow including processing stages
such as spatial registration to the Talairach standard space, skull
removal, normalization of WM intensity, tessellation of GM-WM
segmentation, among others. For the cortical parcellation, two
atlases are available: one gyral based atlas resulting in 68 struc-
tures (Desikan et al., 2006) and another considering the giral and
sulcal parts as separate regions resulting in 148 different brain
areas (Destrieux et al., 2010). For the present study the subcortical,

WM, and gyral-based cortical segmentations were considered.
The employed workflow has suffered several improvements in
the past years (Fischl et al., 2002, 2004), is considered reliable
across sessions, scanner platforms, updates and field strengths
(Han and Fischl, 2007; Jovicich et al., 2009) and was already
validated against manual segmentation procedures (Fischl et al.,
2002).

STATISTICAL ANALYSES
Statistical analyses [using the IBM SPSS Statistics software,
v.22 (IBM, New York, NY, USA)] were performed with multi-
ple regression models considering each volume as the depen-
dent variable and age, gender, intracranial volume (ICV),
PSS, GDS, and age∗PSS, age∗GDS and age∗PSS∗GDS interac-
tions as independent variables. Additionally, in order to test
any effect of the MMSE scores in the model, we included
MMSE and the interaction MMSE∗GDS as independent vari-
ables. For each positive or negative correlation, the results
were controlled for the other covariates. The key assumptions
for multivariate linear regression analysis were met and the
covariates were mean-centered to avoid multicollinearity issues
(Aiken and West, 1991; Frazier et al., 2004).

Dissection of the two-way interactions was performed centring
the PSS or GDS scores 1 SD below the mean, on the mean and 1
SD above the mean and assessing the age effect on brain volume-
try in each model. In order to investigate the significant three-way
interactions, the age effect was assessed in four different models:
(1) centring both PSS and GDS scores one SD below the mean,
(2) with the PSS scores centered one SD above the mean and GDS
scores one SD below the mean, (3) PSS scores centered one SD
below the mean and GDS one SD above the mean and (4) both
variables centered one SD above the mean. Results were consid-
ered significant corrected for multiple comparisons using a False
Discovery Rate (FDR) threshold of 0.05.

RESULTS
EFFECT OF AGE, STRESS, AND MOOD ON BRAIN VOLUMETRY
Volumetric analyses revealed that increased age was positively
correlated with the volume of the choroid plexus (both sides),
lateral ventricles and third ventricle and WM hypointensities.
Most of the age correlations found were negative, including
the total GM, cortical WM on both hemispheres, supratentorial
volume, left accumbens, and both hippocampi (Table 1). The
WM presented more alterations, but only negative correlations
were observed with increasing age (Table 2). More specifi-
cally, significant volumetric decreases in the WM volume with
increasing age were found in the orbitofrontal cortex, superior
frontal, inferior and middle temporal, parahippocampal, poste-
rior cingulate, and other frontal, parietal and temporal regions
(Table 2).

The separate impact of stress (PSS score) and mood (GDS
score) on brain volumetry did not reveal any significant changes,
except for a decreased in WM volumetry in the right frontal
pole with lower PSS scores (Table 2). A negative correlation
between MMSE and GDS scores was found (p = 0.0002), how-
ever, none significant alteration was found when including MMSE
and MMSE∗GDS in the model.
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Table 1 | Effect of age on brain volumetry (corrected for multiple

comparisons FDR 0.05).

Effect Correlation Region T P

Age Positive Choroid plexus (right) 5.8224 9.28E-08

Lateral ventricle (left) 5,4376 4.78E-07

White matter (WM)

hypointensities

4.8414 5.47E-06

Lateral ventricle (right) 4.6083 1.36E-05

Choroid plexus (left) 3.7589 0.0003

3rd Ventricle 3.2458 0.0017

Negative Cortical WM (right) −7.2174 1.78E-10

Cortical WM −6.9783 5.35E-10

Cortical WM (left) −6.5820 3.24E-09

Supratentorial −5.1779 1.41E-06

Accumbens (left) −4.6633 1.10E-05

Hippocampus (left) −4.0750 0.0001

Hippocampus (right) −3.8995 0.0001

Total gray matter (GM) −3.5415 0.0006

INTERACTIONS OF AGE WITH STRESS AND MOOD ON BRAIN
VOLUMETRY
Tests for the two-way interaction between age and PSS revealed
a significant interaction with the volume of the left frontal pole
(p = 0.0024). Further analysis revealed that for lower PSS scores,
decreased volumes were observed with increasing aging; however,
as PSS scores get higher the slope of increase with age also increases.
In the left temporal pole (p = 0.0061), for low GDS scores, its
volume increases with age, while for medium to high GDS scores
there is a reduction that gets more pronounced as the scores get
higher (Table 3; Figure 1A).

In the WM regional volumetry, only negative age∗GDS inter-
actions were found (Table 4; Figure 1B). In the left frontal
(p = 0.0018) and temporal pole (p = 0.0066), for low GDS
scores, the WM volume increases with the age while for medium
to high scores the volume decreases and the rate of decrease
gets more prominent as the GDS scores get higher. In the left
superior parietal (p = 0.0083) the WM volume decreases with
age and this decrease gets more pronounced as GDS scores get
higher.

The WM volume of the left paracentral (p = 0.0092) and the left
superior frontal (p = 0.0093) regions showed three-way interac-
tions, with both regions evidencing negative correlations between
volume and age (Table 4; Figure 1C). Specifically, for low PSS
scores, as GDS scores change from low to high the rate of volume
decrease with age becomes more pronounced while for high PSS
scores, the rate of volume decrease with age becomes less marked
as GDS scores change from low to high.

DISCUSSION
Several studies have consistently described the critical impact
of the aging process, stress, and mood on brain volumetry.

Table 2 | Effect of age and stress on brain WM regional volumetry

(corrected for multiple comparisons FDR 0.05).

Effect Correlation Region T P

Age Negative Lateral orbitofrontal (right) −5.4714 4.15E-07

Lateral orbitofrontal (left) −5.7956 1.04E-07

Superior frontal (left) −5.6346 2.08E-07

Inferior temporal (left) −5.4901 3.83E-07

Cerebellum (right) −4.8172 6.02E-06

Posterior cingulate (right) −4.5550 1.68E-05

Superior frontal (right) −4.5026 2.05E-05

Inferior temporal (right) −4.2957 4.47E-05

Paracentral (left) −4.2858 4.65E-05

Paracentral (right) −4.2858 0.00090

Medial orbitofrontal (right) −4.2247 5.82E-05

Parahippocampal (right) −4.1981 6.57E-05

Superior parietal (right) −4.0156 0.00020

Postcentral (left) −3.9499 0.00015

Entorhinal (left) −3.9136 0.00018

Middle temporal (right) −3.9029 0.00001

Superior parietal (left) −3.8834 0.00020

Pars triangularis (right) −3.8736 0.00021

Middle temporal (left) −3.8476 0.00022

Pars orbitalis (right) −3.7961 0.00027

Precentral (left) −3.7331 0.00033

Fusiform (left) −3.7016 0.00037

Postcentral (right) −3.5270 0.00067

Lateral occipital (right) −3.4985 0.00074

Cerebellum (left) −3.4613 0.0008

Inferior parietal (right) −3.4307 0.00092

Posterior cingulate (left) −3.4172 0.00096

Rostral middle frontal (left) −3.3386 0.00012

Rostral middle frontal (right) −3.3753 0.00110

Superior temporal (right) −3.3266 0.00128

Parahippocampal (left) −3.2781 0.00150

Pars opercularis (right) −3.2039 0.00189

Insula (right) −3.0532 0.00300

Lingual (right) −3.0464 0.00305

Pars triangularis (left) −3.0312 0.00320

Fusiform (right) −2.9598 0.00037

Frontal pole (right) −2.9472 0.00410

Lingual (left) −2.9103 0.00457

Supramarginal (left) −2.8668 0.00525

Supramarginal (right) −2.8627 0.00525

Inferior parietal (left) −2.8547 0.0092

PSS Negative Frontal pole (right) −3.3396 1.23E-03
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Table 3 | Effect of the interplay between stress and aging and stress and mood on brain volumetry (corrected for multiple comparisons FDR

0.05).

Interaction Correlation Region M–SD/M/M + SD T P

Age*PSS Positive Frontal pole (left) −2.6821/3.5549/9.7919 3.1282 0.0024

Age*GDS Negative Temporal pole (left) 10.2711/−1.7243/−13.7198 −2.8121 0.0061

M, Mean; SD, standard deviation.

FIGURE 1 |The interplay between stress or mood and aging in brain

regional gray matter (GM) volumes (A), white matter (WM) regions (B),

and the Age*PSS*GDS interactions (C). The images depict areas with
significant interaction effects of age*PSS positive (in red), age*GDS negative
(in yellow) and age*PSS*GDS positive (in violet). In (C) each graphic line is

the regression line between age and regional volume for: Low PSS values
(LPSS, black lines), combined with Low GDS (LPSS–LGDS, solid line), or with
High GDS (LPSS–HGDS, dotted line); and High PSS value (HPSS, red lines),
combined with Low GDS (HPSS–LGDS, solid line) or High GDS (HPSS–HGDS,
dotted line).

Nevertheless, most of the neuroimaging studies focused on the
effect of individual elements, precluding the critical influence of
the complex interplay among various processes. In this study,
we dissected the influence of life events on brain GM and WM
volumetry, namely stress (a more prolonged/chronic stress) and
mood, throughout aging, and how they interplay and impact on
brain structure.

With aging, we found a global, as well as a regional, pat-
tern of volumetric GM and WM decrease, accompanied by an
expansion of the ventricles, choroid plexus and CSF spaces,
reflecting an atrophy of the brain parenchyma. Total and subcor-
tical GM was decreased with age, including the left accumbens,
both hippocampi and total cortical WM, frontal, temporal,
occipital, and parietal WM regions also presented significant
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Table 4 | Effect of the interplay between aging, stress, and mood on brainWM regional volumetry (corrected for multiple comparisons FDR 0.05).

Interaction Correlation Region M–SD/M/M + SD T P

Age*GDS Negative Frontal pole (left) 1.1835/−0.9989/−3.1813 −3.2240 0.0018

Temporal pole (left) 1.8836/−2.0358/−5.9551 −2.7813 0.0066

Superior parietal (left) −15.6389/−62.1391/−108.6391 −2.7026 0.0083

LPSS_LGDS/LPSS_HGDS/HPSS_LGDS/HPSS_HGDS

Age*PSS*GDS Positive Paracentral (left) −5.0132/−37.1670/−52.2815/−9.5234 2.6634 0.0092

Superior frontal (left) −46.3864/−200.5990/−156.4589/−66.0731 2.6541 0.0093

M, Mean; SD, standard deviation; LPSS, Low Perceived Stress Scale scores; HPSS, High Perceived Stress Scale scores; LGDS, Low Geriatric Depression Scale
scores; HGDS, High Geriatric Depression Scale scores.

volumetric decreases with age. Similar findings have been con-
sistently reported in the literature, both in cross-sectional and
longitudinal studies (Raz et al., 2005; Smith et al., 2007; Abe et al.,
2008; Fjell et al., 2009; Walhovd et al., 2011; Tamnes et al., 2013).
Specifically, however, herein we found a higher decrease in global
WM than GM, confirming a striker WM deterioration after the
fifth decade (Gunning-Dixon et al., 2009; Lemaitre et al., 2012).
This global WM volume decline, more pronounced in frontal
regions (orbitofrontal, superior frontal, and rostral middle frontal)
was paralleled by an increase with age of the WM hypointensities
volume, a measure of lesion burden (Leritz et al., 2014).

It is well known that the stress impact is diverse on differ-
ent life phases (Sousa and Almeida, 2012). Additionally, stress
and mood are states known to be intrinsically connected and
that interplay over the lifespan (Calabrese et al., 2009). In this
study, and excluding any impact of the MMSE scores, in the vol-
ume of the left frontal pole GM, there was an inversion from
decreases at low stress levels to increases at high levels with age.
This result shows the critical stress impact in the frontal regions,
especially at higher stress levels, leading to inversions from age-
induced reductions to volume increases during aging (Cerqueira
et al., 2007; Lupien et al., 2009). Importantly, behavioral stress
affects, with possible reversibility, both structure and function of
the prefrontal cortex, a region where neurons become less effi-
cient with aging (McEwen and Morrison, 2013). On the other
hand, on the left frontal pole WM, there is an increase in the
volume reduction with age for higher depressive mood levels, in
line with several previous findings (Konarski et al., 2008; Kong
et al., 2014), showing the high susceptibility and variability of this
region. Several studies have reported volumetric reductions in
temporal regions associated with mood disorders (Drevets et al.,
2008; Son et al., 2013) and herein we observed the depressive
mood impact, especially at higher levels, in the increased volu-
metric reduction of the WM and GM in the left temporal pole.
In this study we also found an increased volumetric reduction
with age at high depressive mood levels in the left superior pari-
etal WM, in line with the literature pointing to WM decreases
in older patients with major depressive disorder (Zeng et al.,
2012). Such lateralization effect, with more pronounced atrophy
in structures localized in the left hemisphere, is in good line with
previous studies on this topic (see for review, Cerqueira et al.,
2008).

The most affected WM regions during aging by the interplay
stress and mood are the left paracentral and the left superior frontal
regions. Indeed, the superior frontal WM volume is known to
present an accelerated decline with increasing age (Salat et al.,
2009a). The volume of these regions decrease for all stress and
mood level combinations, however, the decrease is much more
pronounced for high stress and low mood levels. This indicates
that for better mood (i.e., less depressive), the effect of stress
is negative since it increases the negative relation between age
and volume; this negative impact of stress does not seem to
operate so obviously for subjects with higher depressive mood.
These higher volumetric reductions with age, especially under
high levels of stress, in WM of these regions, may be associ-
ated with the lower predisposition to action and extraception
observed with increasing age. Importantly, the impact of stress
and mood during the lifespan seems to be higher in the WM com-
pared to the GM volumetry, in line with the described faster WM
deterioration after the fifth decade of life (Gunning-Dixon et al.,
2009).

This study presents also some important limitations. The anal-
yses of stress and mood states were based only in psychological
scales without any biological marker and indicator. Also, our
sample included only middle aged to older adults and was a cross-
sectional design, precluding a complete lifespan assessment, from
childhood to elderly ages, and the evaluation of both individual
differences and cohort effects. However, to the best of our knowl-
edge there are no prior reports that evaluate the interplay between
stress and mood on brain volumetry across the lifespan.

CONCLUSION
In this study we have shown the critical influence of stress and
mood, especially at higher levels, in brain volumetry. High lev-
els of stress and/or mood may accelerate the typical age-induced
decline or alternatively reduce the aging impact. We showed also
that for the effects of stress and mood in brain volumetry, timing is
crucial. Indeed, the clarification of the stress and mood interplay
during aging may help to explain some divergent results associ-
ated with the aging decline. Moreover, we expect also to enlighten
the association between abnormal volumetric alterations and sev-
eral states that may lead to psychiatric disorders (Drevets et al.,
2008; Konarski et al., 2008; Kempton et al., 2011; Kroes et al., 2011;
Durkee et al., 2013; Kuhn and Gallinat, 2013)
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