14 research outputs found

    Fast spectrally encoded Mueller optical scanning microscopy

    Get PDF
    Mueller microscopes enable imaging of the optical anisotropic properties of biological or non-biological samples, in phase and amplitude, at sub-micrometre scale. However, the development of Mueller microscopes poses an instrumental challenge: the production of polarimetric parameters must be sufficiently quick to ensure fast imaging, so that the evolution of these parameters can be visualised in real-time, allowing the operator to adjust the microscope while constantly monitoring them. In this report, a full Mueller scanning microscope based on spectral encoding of polarization is presented. The spectrum, collected every 10 μs for each position of the optical beam on the specimen, incorporates all the information needed to produce the full Mueller matrix, which allows simultaneous display of all the polarimetric parameters, at the unequalled rate of 1.5 Hz (for an image of 256 × 256 pixels). The design of the optical blocks allows for the real-time display of linear birefringent images which serve as guidance for the operator. In addition, the instrument has the capability to easily switch its functionality from a Mueller to a Second Harmonic Generation (SHG) microscope, providing a pixel-to-pixel matching of the images produced by the two modalities. The device performance is illustrated by imaging various unstained biological specimens

    Development of a rapid polarized total synchronous fluorescence spectroscopy (pTSFS) method for protein quantification in a model bioreactor broth

    No full text
    Protein quantification during bioprocess monitoring is essential for biopharmaceutical manufacturing and is complicated by the complex chemical composition of the bioreactor broth. Here we present the early-stage development and optimization of a polarised Total Synchronous Fluorescence Spectroscopy (pTSFS) method for protein quantification in a hydrolysate-protein model (mimics clarified bioreactor broth samples) using a standard benchtop laboratory fluorometer. We used UV transmitting polarizers to provide wider range pTSFS spectra for screening of the four different TSFS spectra generated by the measurement: parallel (||), perpendicular (Âż), unpolarized (T) intensity spectra and anisotropy maps. TSFS|| (parallel polarised) measurements were the best for protein quantification compared to standard unpolarized measurements and the Bradford assay. This was because TSFS|| spectra had a better analyte signal to noise ratio (SNR), due to the anisotropy of protein emission. This meant that protein signals were better resolved from the background emission of small molecule fluorophores in the cell culture media. SNR of > 5000 was achieved for concentrations of BSA/YST 1.2/10 g L-1 with TSFS|| . Optimisation using genetic algorithm and interval Partial Least Squares based variable selection enabled reduction of spectral resolution and number of excitation wavelengths required without degrading performance. This enables fast (This publication emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant number (14/IA/2282, Advanced Analytics for Biological Therapeutic Manufacture, to AGR). We also thank Agilent Technologies (Mulgrave Victoria, Australia) for an instrument loan. The authors declare no financial or commercial conflict of interest.peer-reviewe

    Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels

    No full text
    International audienceThe Avabidopsis thaliana K+ channel AKT1 was expressed in a yeast strain defective for K+ uptake at low K+ concentrations (<3 mM). Besides restoring K+ transport in this strain, AKT1 expression increased its tolerance to salt (NaCl or LiCl), whatever the external K+ concentration used (50 mu M, 5 mM, or 50 mM), We took advantage of the latter phenomenon for screening a library of channels randomly mutated in the region that shares homologies with the pore forming domain (the so-called P domain) of animal K+ channels (Shaker family). Cassette mutagenesis was performed using a degenerate oligonucleotide that was designed to ensure, theoretically, a single mutation per P cassette. The mean number of amino acid exchanges per cassette turned out to be 1.4, Mutant channels that conferred on the transformed cells a reduction in salt tolerance (increased Na+ content, decreased K+ content, and lower growth rate, as compared to control cells expressing the wild-type channel) were selected. By co-expressing them with the wild-type AKT1 cDNA, it was shown that the mutated polypeptides were expressed, stable and correctly targeted to the cell membrane where they formed channels with altered properties. Analysis of the mutation distribution in these channels suggests that the AKT1 P domain has a structure similar to that of animal Shaker channels (a strongly constrained central region lining the tunnel that includes the highly conserved consensus motif TXXTXGYGD, and flanking regions forming the outer mouth of the pare), with an additional selectivity filter located upstream from the tunnel and formed by residues present in the N-terminal flanking region
    corecore