106 research outputs found

    A matrix factorization framework for jointly analyzing multiple nonnegative data

    Get PDF
    Nonnegative matrix factorization based methods provide one of the simplest and most effective approaches to text mining. However, their applicability is mainly limited to analyzing a single data source. In this paper, we propose a novel joint matrix factorization framework which can jointly analyze multiple data sources by exploiting their shared and individual structures. The proposed framework is flexible to handle any arbitrary sharing configurations encountered in real world data. We derive an efficient algorithm for learning the factorization and show that its convergence is theoretically guaranteed. We demonstrate the utility and effectiveness of the proposed framework in two real-world applications–improving social media retrieval using auxiliary sources and cross-social media retrieval. Representing each social media source using their textual tags, for both applications, we show that retrieval performance exceeds the existing state-of-the-art techniques. The proposed solution provides a generic framework and can be applicable to a wider context in data mining wherever one needs to exploit mutual and individual knowledge present across multiple data sources

    Metabolic changes after polytrauma: an imperative for early nutritional support

    Get PDF
    Major trauma induces marked metabolic changes which contribute to the systemic immune suppression in severely injured patients and increase the risk of infection and posttraumatic organ failure. The hypercatabolic state of polytrauma patients must be recognized early and treated by an appropriate nutritional management in order to avoid late complications. Clinical studies in recent years have supported the concept of "immunonutrition" for severely injured patients, which takes into account the supplementation of Ω-3 fatty acids and essential aminoacids, such as glutamine. Yet many aspects of the nutritional strategies for polytrauma patients remain controversial, including the exact timing, caloric and protein amount of nutrition, choice of enteral versus parenteral route, and duration. The present review will provide an outline of the pathophysiological metabolic changes after major trauma that endorse the current basis for early immunonutrition of polytrauma patients

    Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice

    Get PDF
    BACKGROUND: The posttraumatic response to traumatic brain injury (TBI) is characterized, in part, by activation of the innate immune response, including the complement system. We have recently shown that mice devoid of a functional alternative pathway of complement activation (factor B-/- mice) are protected from complement-mediated neuroinflammation and neuropathology after TBI. In the present study, we extrapolated this knowledge from studies in genetically engineered mice to a pharmacological approach using a monoclonal anti-factor B antibody. This neutralizing antibody represents a specific and potent inhibitor of the alternative complement pathway in mice. METHODS: A focal trauma was applied to the left hemisphere of C57BL/6 mice (n = 89) using a standardized electric weight-drop model. Animals were randomly assigned to two treatment groups: (1) Systemic injection of 1 mg monoclonal anti-factor B antibody (mAb 1379) in 400 μl phosphate-buffered saline (PBS) at 1 hour and 24 hours after trauma; (2) Systemic injection of vehicle only (400 μl PBS), as placebo control, at identical time-points after trauma. Sham-operated and untreated mice served as additional negative controls. Evaluation of neurological scores and analysis of brain tissue specimens and serum samples was performed at defined time-points for up to 1 week. Complement activation in serum was assessed by zymosan assay and by murine C5a ELISA. Brain samples were analyzed by immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) histochemistry, and real-time RT-PCR. RESULTS: The mAb 1379 leads to a significant inhibition of alternative pathway complement activity and to significantly attenuated C5a levels in serum, as compared to head-injured placebo-treated control mice. TBI induced histomorphological signs of neuroinflammation and neuronal apoptosis in the injured brain hemisphere of placebo-treated control mice for up to 7 days. In contrast, the systemic administration of an inhibitory anti-factor B antibody led to a substantial attenuation of cerebral tissue damage and neuronal cell death. In addition, the posttraumatic administration of the mAb 1379 induced a neuroprotective pattern of intracerebral gene expression. CONCLUSION: Inhibition of the alternative complement pathway by posttraumatic administration of a neutralizing anti-factor B antibody appears to represent a new promising avenue for pharmacological attenuation of the complement-mediated neuroinflammatory response after head injury

    Prevention of incisional hernias with biological mesh : A systematic review of the literature

    Get PDF
    Prophylactic mesh-augmented reinforcement during closure of abdominal wall incisions has been proposed in patients with increased risk for development of incisional hernias (IHs). As part of the BioMesh consensus project, a systematic literature review has been performed to detect those studies where MAR was performed with a non-permanent absorbable mesh (biological or biosynthetic). A computerized search was performed within 12 databases (Embase, Medline, Web-of-Science, Scopus, Cochrane, CINAHL, Pubmed publisher, Lilacs, Scielo, ScienceDirect, ProQuest, Google Scholar) with appropriate search terms. Qualitative evaluation was performed using the MINORS score for cohort studies and the Jadad score for randomized clinical trials (RCTs). For midline laparotomy incisions and stoma reversal wounds, two RCTs, two case-control studies, and two case series were identified. The studies were very heterogeneous in terms of mesh configuration (cross linked versus non-cross linked), mesh position (intraperitoneal versus retro-muscular versus onlay), surgical indication (gastric bypass versus aortic aneurysm), outcome results (effective versus non-effective). After qualitative assessment, we have to conclude that the level of evidence on the efficacy and safety of biological meshes for prevention of IHs is very low. No comparative studies were found comparing biological mesh with synthetic non-absorbable meshes for the prevention of IHs. There is no evidence supporting the use of non-permanent absorbable mesh (biological or biosynthetic) for prevention of IHs when closing a laparotomy in high-risk patients or in stoma reversal wounds. There is no evidence that a non-permanent absorbable mesh should be preferred to synthetic non-absorbable mesh, both in clean or clean-contaminated surgery

    Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice

    Get PDF
    BACKGROUND: Complement represents a crucial mediator of neuroinflammation and neurodegeneration after traumatic brain injury. The role of the terminal complement activation pathway, leading to generation of the membrane attack complex (MAC), has not been thoroughly investigated. CD59 is the major regulator of MAC formation and represents an essential protector from homologous cell injury after complement activation in the injured brain. METHODS: Mice deleted in the Cd59a gene (CD59a(-/-)) and wild-type littermates (n = 60) were subjected to focal closed head injury. Sham-operated (n = 60) and normal untreated mice (n = 14) served as negative controls. The posttraumatic neurological impairment was assessed for up to one week after trauma, using a standardized Neurological Severity Score (NSS). The extent of neuronal cell death was determined by serum levels of neuron-specific enolase (NSE) and by staining of brain tissue sections in TUNEL technique. The expression profiles of pro-apoptotic (Fas, FasL, Bax) and anti-apoptotic (Bcl-2) mediators were determined at the gene and protein level by real-time RT-PCR and Western blot, respectively. RESULTS: Clinically, the brain-injured CD59a(-/- )mice showed a significantly impaired neurological outcome within 7 days, as determined by a higher NSS, compared to wild-type controls. The NSE serum levels, an indirect marker of neuronal cell death, were significantly elevated in CD59a(-/- )mice at 4 h and 24 h after trauma, compared to wild-type littermates. At the tissue level, increased neuronal cell death and brain tissue destruction was detected by TUNEL histochemistry in CD59a(-/- )mice within 24 hours to 7 days after head trauma. The analysis of brain homogenates for potential mediators and regulators of cell death other than the complement MAC (Fas, FasL, Bax, Bcl-2) revealed no difference in gene expression and protein levels between CD59a(-/- )and wild-type mice. CONCLUSION: These data emphasize an important role of CD59 in mediating protection from secondary neuronal cell death and further underscore the key role of the terminal complement pathway in the pathophysiology of traumatic brain injury. The exact mechanisms of complement MAC-induced secondary neuronal cell death after head injury require further investigation

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed

    Experimental traumatic brain injury

    Get PDF
    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury

    Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ

    Get PDF
    [Background] The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells.[Methods] Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3.[Results] In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo.[Conclusions] Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3.This work was supported by MINECO, Grant SAF2014-52940-R and partially financed with FEDER funds. CIBERNED is funded by the Instituto de Salud Carlos III. JAM-G was supported by CIBERNED. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Traumatic brain injury and peripheral immune suppression: primer and prospectus

    Get PDF
    Nosocomial infections are a common occurrence in patients following traumatic brain injury (TBI) and are associated with an increased risk of mortality, longer length of hospital stay and poor neurological outcome. Systemic immune suppression arising as a direct result of injury to the central nervous system (CNS) is considered to be primarily responsible for this increased incidence of infection, a view strengthened by recent studies that have reported novel changes in the composition and function of the innate and adaptive arms of the immune system post TBI. However, our knowledge of the mechanisms that underlie TBI-induced immune suppression is equivocal at best. Here, after summarising our current understanding of the impact of TBI on peripheral immunity and discussing CNS-mediated regulation of immune function, we propose roles for a series of novel mechanisms in driving the immune suppression that is observed post TBI. These mechanisms, which have never been considered before in the context of TBI-induced immune paresis include the CNS-driven emergence into the circulation of myeloid derived suppressor cells and suppressive neutrophil subsets, and the release from injured tissue of nuclear and mitochondria-derived damage associated molecular patterns. Moreover, in an effort to further our understanding of the mechanisms that underlie TBI-induced changes in immunity, we pose throughout the review a series of questions, which if answered would address a number of key issues such as establishing whether manipulating peripheral immune function has potential as a future therapeutic strategy by which to treat and/or prevent infections in the hospitalised TBI patient
    corecore