212 research outputs found

    THE BIOPHYSICAL AND BIOCHEMICAL IMPACTS OF FOREST DISTURBANCES ACROSS ECOSYSTEMS

    Get PDF
    Forest disturbances result in numerous impacts on ecosystem services. In the western United States, disturbances such as wildfires and bark beetle outbreaks have resulted in millions of hectares of dead trees. Despite the potential for these events to have significant climatic impacts, it remains a challenge both to effectively locate and characterize disturbance events across landscapes, and to identify the disturbance biophysical and biochemical impacts. The objective of my dissertation research was to improve the ways in which we locate and classify forest disturbances over large areas, as well as to increase our understanding of disturbance biophysical and biochemical impacts and how those impacts vary according to ecosystem properties. In chapter 1, I researched how a severe mountain pine beetle outbreak in western Montana influenced the future characteristics of lodgepole pine forests through the use of dendrochronological and climate station data. I investigated whether the outbreak had differentially impacted differing growth phenotypes, resulting in changes in forest productivity, and how growth phenotype related to patterns of growth-climate sensitivity. In chapter 2, I moved up in scale to investigate the biophysical and biochemical impacts of multiple forest disturbance classes, as well as how impacts of forest disturbances differed across varying ecoregions around the western United States. For chapter 3, I sought to improve our ability to understand the climatic impacts of forest disturbances by developing a logical framework to more accurately and efficiently detect and attribute forest disturbances using satellite imagery. The results of my work demonstrate the potential for large-scale impacts of forest disturbances on climate, and also suggest that current disturbances may alter the future forest-climate interactions. Additionally, the results from chapters 1 and 2 suggest that there is significant variability in the impacts of forest disturbances on climate, both within and among ecoregions and among disturbance types. This variability is mostly ignored in large-scale simulations of disturbance, despite its potential to significantly alter model and simulation results. The framework developed for my 3rd chapter will enable a better understanding of the variability of forest disturbances and allow for better prediction of their impacts on climate and other ecosystem properties

    Spontaneous cytokine production in children according to biological characteristics and environmental exposures.

    Get PDF
    BACKGROUND: Environmental factors are likely to have profound effects on the development of host immune responses, with serious implications for infectious diseases and inflammatory disorders such as asthma. OBJECTIVE: This study was designed to investigate the effects of environmental exposures on the cytokine profile of children. METHODS: The study involved measurement of T helper (Th) 1 (interferon-gamma), 2 [interleukin (IL)-5 and IL-13], and the regulatory cytokine IL-10 in unstimulated peripheral blood leukocytes from 1,376 children 4-11 years of age living in a poor urban area of the tropics. We also assessed the impact of environmental exposures in addition to biological characteristics recorded at the time of blood collection and earlier in childhood (0-3 years before blood collection). RESULTS: The proportion of children producing IL-10 was greater among those without access to drinking water [p < 0.05, chi-square test, odds ratio (OR) = 1.67]. The proportion of children producing IL-5 and IL-10 (OR = 10.76) was significantly greater in households that had never had a sewage system (p < 0.05, trend test). CONCLUSIONS: These data provide evidence for the profound effects of environmental exposures in early life as well as immune homeostasis in later childhood. Decreased hygiene (lack of access to clean drinking water and sanitation) in the first 3 years of life is associated with higher spontaneous IL-10 production up to 8 years later in life

    Effects of maternal geohelminth infections on allergy in early childhood.

    Get PDF
    BACKGROUND: Maternal geohelminth infections during pregnancy may protect against allergy development in childhood. OBJECTIVE: We sought to investigate the effect of maternal geohelminths on the development of eczema, wheeze, and atopy during the first 3 years of life. METHODS: A cohort of 2404 neonates was followed to 3 years of age in a rural district in coastal Ecuador. Data on wheeze and eczema were collected by means of questionnaire and physical examination at 13, 24, and 36 months of age. Atopy was measured based on skin prick test (SPT) reactivity to 9 allergens at 36 months. Maternal stool samples were examined for geohelminths by microscopy. Data on potential confounders was collected after birth by questionnaire. RESULTS: Geohelminths were observed in 45.9% of mothers. Eczema and wheeze were reported for 17.7% and 25.9%, respectively, of 2069 (86.1%) children with complete follow-up to 3 years, and allergen SPT reactivity to any allergen was present in 17.2% and to house dust mite in 8.7%. Maternal geohelminth infections were not significantly associated with eczema (adjusted odds ratio [OR], 1.26; 95% CI, 0.98-1.61), wheeze (adjusted OR, 1.02; 95% CI, 0.82-1.27), and SPT reactivity to any allergen (adjusted OR, 0.79; 95% CI, 0.61-1.01). In subgroup analyses maternal geohelminths were associated with a significantly reduced risk of SPT reactivity to mite and other perennial allergens, and maternal ascariasis was associated with an increased risk of eczema and reduced risk of SPT reactivity to all allergens. CONCLUSION: Our data do not support a protective effect of maternal infections with geohelminth parasites during pregnancy against the development of eczema and wheeze in early childhood, although there was evidence in subgroup analyses for a reduction in SPT reactivity to house dust mites and perennial allergens

    Effects of environment on human cytokine responses during childhood in the tropics: role of urban versus rural residence.

    Get PDF
    BACKGROUND: Environment may have a key role in the development of the immune system in childhood and environmental exposures associated with rural residence may explain the low prevalence of allergic and autoimmune diseases in the rural tropics. We investigated the effects of urban versus rural residence on the adaptive immune response in children living in urban and rural areas in a tropical region of Latin America. METHODS: We recruited school children in either rural communities in the Province of Esmeraldas or in urban neighborhoods in the city of Esmeraldas, Ecuador. We collected data on environmental exposures by questionnaire and on intestinal parasites by examination of stool samples. Peripheral blood leukocytes (PBLs) in whole blood were stimulated with superantigen, parasite antigens and aeroallergens and IFN-γ, IL-5, IL-10, IL-13, and IL-17 were measured in supernatants. RESULTS: We evaluated 440 school children; 210 living in rural communities and 230 in the city of Esmeraldas. Overall, urban children had greater access to piped water (urban 98.7 % vs. rural 1.9 %), were more likely to have a household bathroom (urban 97.4 % vs. rural 54.8 %), and were less likely to be infected with soil-transmitted helminth infections (urban 20.9 % vs. rural 73.5 %). Generally, detectable levels of cytokines were more frequent in blood from children living in urban than rural areas. Urban residence was associated with a significantly greater frequency of IL-10 production spontaneously (adjusted OR 2.56, 95 % CI 1.05-6.24) and on stimulation with Ascaris (adj. OR 2.5, 95 % CI 1.09-5.79) and house dust mite (adj. 2.24, 95 % CI 1.07-4.70) antigens. Analysis of effects of environmental exposures on SEB-induced IL-10 production within urban and rural populations showed that some environmental exposures indicative of poor hygiene (urban - higher birth order, A. lumbricoides infection; rural - no bathroom, more peri-domiciliary animals, and living in a wood/bamboo house) were associated with elevated IL-10. CONCLUSIONS: In our study population, the immune response of children living in an urban environment was associated more frequently with the production of the immune regulatory cytokine, IL-10. Some factors related to poor hygiene and living conditions were associated with elevated IL-10 production within urban and rural populations

    Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets

    Get PDF
    Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y−2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes

    Sequencing of 15 622 Gene-bearing BACs Clarifies the Gene-dense Regions of the Barley Genome

    Get PDF
    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant

    Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations

    Get PDF
    To assess global carbon cycle variability, we decompose the net land carbon sink into the sum of gross primary productivity (GPP), terrestrial ecosystem respiration (TER), and fire emissions and apply a Bayesian framework to constrain these fluxes between 1980 and 2014. The constrained GPP and TER fluxes show an increasing trend of only half of the prior trend simulated by models. From the optimization, we infer that TER increased in parallel with GPP from 1980 to 1990, but then stalled during the cooler periods, in 1990-1994 coincident with the Pinatubo eruption, and during the recent warming hiatus period. After each of these TER stalling periods, TER is found to increase faster than GPP, explaining a relative reduction of the net land sink. These results shed light on decadal variations of GPP and TER and suggest that they exhibit different responses to temperature anomalies over the last 35 years

    Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis

    Get PDF
    Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here, we characterized the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, and rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. Moreover, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling‐induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in the Arabidopsis max3‐9, max4‐1, and max2‐1 mutants that are defective in SL synthesis or signalling. When grown on agar plates, the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24, decreased leaf area in the wild type, max3‐9, and max4‐1 mutants but not in max2‐1 in the absence of stress. In addition, a chilling‐induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance.BBSRC, Grant/Award Number: BB/K501839/1https://wileyonlinelibrary.com/journal/pce2019-06-01hj2018Forestry and Agricultural Biotechnology Institute (FABI)Plant Production and Soil Scienc

    Growth patterns in early childhood: Better trajectories in Afro-Ecuadorians independent of sex and socioeconomic factors.

    Get PDF
    The first years of life are the most dynamic period for childhood growth. There are limited data available on growth patterns of infants and children living in rural Latin America. The aim of this study was to describe the growth patterns from birth to 5years in children living in a rural District of tropical coastal Ecuador using data from a birth cohort of 2404 neonates. We hypothesize that there would be growth differences according to ethnicity and sex. Evaluations were conducted at birth or until 2weeks of age and at 7, 13, 24, 36 and 60months during clinic and home visits. Individual growth trajectories for weight-for-age, height-for-age and weight/height-for-age Z-scores were estimated using multilevel models. Girls were lighter and shorter than boys at birth. However, Afro-Ecuadorian children (versus mestizo or indigenous) were longer/taller and heavier throughout the first 5years of life and had greater mean trajectories for HAZ and WAZ independent of sex and socioeconomic factors. Our data indicate that ethnicity is a determinant of growth trajectories during the first 5years of life independent of socioeconomic factors in a birth cohort conducted in a rural region of Latin America
    corecore