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Abstract To assess global carbon cycle variability, we decompose the net land carbon sink into the sum of
gross primary productivity (GPP), terrestrial ecosystem respiration (TER), and fire emissions and apply a
Bayesian framework to constrain these fluxes between 1980 and 2014. The constrained GPP and TER fluxes
show an increasing trend of only half of the prior trend simulated by models. From the optimization, we infer
that TER increased in parallel with GPP from 1980 to 1990, but then stalled during the cooler periods, in
1990–1994 coincident with the Pinatubo eruption, and during the recent warming hiatus period. After each
of these TER stalling periods, TER is found to increase faster than GPP, explaining a relative reduction of the
net land sink. These results shed light on decadal variations of GPP and TER and suggest that they exhibit
different responses to temperature anomalies over the last 35 years.

1. Introduction

Gross primary production (GPP) and terrestrial ecosystem respiration (TER) are the two largest fluxes of CO2

between the atmosphere and biosphere. An accurate quantification of the variability and trends of these
fluxes is crucial to understand observed changes in the net land carbon sink. Global data-driven GPP esti-
mates have been provided by up-scaling measurements from eddy covariance sites through model tree
ensembles (Beer et al., 2010; Jung et al., 2011) and by translating spaceborne observations of the fraction
of absorbed photosynthetically active radiation (fAPAR) using empirical light use efficiency (LUE) models
(Zhao et al., 2005). Spaceborne measurements of Sun-induced chlorophyll fluorescence also offer the poten-
tial to constrain GPP variability, but the limited length of the time series prevents a proper assessment of the
temporal trends (Duveiller & Cescatti, 2016; Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013).
However, discrepancies exist between the global mean GPP values from different data products (e.g.,
123 ± 8 PgC yr�1 during 1998–2005 in Beer et al., 2010, compared to 109 PgC yr�1 from 2001 to 2003 in
Zhao et al., 2005). The observed temporal trend of GPP is also uncertain (Anav et al., 2015; Huang et al.,
2015) probably because the long-term CO2 fertilization on photosynthesis is only partly incorporated into
LUE models and also partly accounted for in eddy-covariance up-scaling products based on short-term
measurements, remote sensing observations, and climate data products.

In contrast to GPP, there are very few global products of TER, due to the difficulty in up-scaling heteroge-
neous site-level measurements (Luo et al., 2016). The information content of satellite observations to con-
strain TER is also limited (Jung et al., 2011). To our knowledge, there is only one global soil respiration
database compiled by Bond-Lamberty and Thomson (2010) from 1,434 point-scale field measurements. A
positive temporal trend of global soil respiration between 1989 and 2008 was found in this data set, but with
a large uncertainty. As an alternative to direct observations, TER can be indirectly constrained from the mass
balance of the net land sink, GPP, and fire emissions (FR).
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Decadal variability of the net carbon fluxes in the global carbon budget, i.e., land and ocean sinks, land use
change emissions, and fossil fuel emissions, was studied by Li et al. (2016) using a Bayesian method. This
study goes one step further by analyzing the decadal variability of GPP and TER constrained by long-term
observations. Here we combine different observational data sets of global gross and net carbon fluxes
(Ciais et al., 2013; Le Quéré et al., 2015) in a Bayesian fusion framework to infer decadal changes of GPP
and TER. Specifically, we decompose the net land carbon flux (B + L), where B is the net carbon sink over lands
not affected by land use change and L is land use change emission, into gross fluxes, according to
B + L = GPP + TER + FR. We focus here on gross fluxes and thus take (B + L) as a single observed constraint
in the inversion system, instead of considering separate estimates of B and L. The Bayesian fusion method
combines prior values of fluxes from models with observational data sets to provide optimal estimates. In
our study, GPP, TER, and FR are constrained by their own related observation-based data (Figure S1 in the
supporting information), but also indirectly by the observation of B + L. Because most global observation-
based data sets are available after 1980 only, the Bayesian fusion is applied on 5 year intervals from 1980
to 2014 to keep observational constraints efficient and yet make it possible to study quasi-decadal temporal
variability in land fluxes. Furthermore, looking at 5 year intervals reduces the interannual variability of net
terrestrial carbon exchange that we know is due to temperature and precipitation anomalies associated with
El Niño–Southern Oscillation (Betts et al., 2016).

2. Materials and Methods
2.1. Prior and Constraining Data

The control fluxes to be optimized are (1) fossil fuel and cement emissions (F), (2) ocean sink (O), (3) fire emis-
sions (FR), (4) mean GPP (G0) and TER (T0) during the period of 2005–2009, and (5) GPP and TER changes
(ΔGPP and ΔTER) over consecutive 5 year periods. The prior F estimates are from four inventories, and O
are from biogeochemistry models, which were also used in Li et al. (2016). Prior distributions of FR, G0, T0,
ΔGPP, and ΔTER are the ensemble means from the TRENDY v2 dynamic global vegetation models (DGVMs;
Table S1) (Best et al., 2011; Clark et al., 2011; Ito & Inatomi, 2012; Jain & Yang, 2005; Kato et al., 2013;
Krinner et al., 2005; Oleson et al., 2013; Reick et al., 2013; Sitch et al., 2003, 2015; Smith et al., 2001; Stocker
et al., 2014; Zaehle & Friend, 2010; Zeng et al., 2005). The priors of these fluxes are shown in Table S2.

Observational data sets (Table S3) compiled (Heil et al., 2010; Jacobson et al., 2007; Pan et al., 2011;
Rödenbeck et al., 2013, 2015; Van Der Werf et al., 2010; Zhao, Running, & Nemani, 2006) to constrain these
prior estimates are (1) 5 year averaged CO2 growth rate from NOAA/Earth System Research Laboratory
(ESRL) atmospheric stations (Ballantyne et al., 2015; NOAA/ESRL, 2015); (2) 5 year averaged growth rate of
O2/N2 in the atmosphere from the Scripps O2 Program (Keeling & Manning, 2014); (3) five observation-driven
estimates of O (Khatiwala et al., 2009; Landschützer et al., 2014; McNeil et al., 2003; Rödenbeck et al., 2014;
Steinkamp & Gruber, 2013); (4) decadal mean estimates of B + L from the Regional Carbon Cycle
Assessment and Processes regional budget publications, mainly based on land carbon storage change
inventories (see Table S3 in Li et al., 2016); (5) GPP data sets from the Moderate Resolution Imaging
Spectroradiometer (MODIS) data-driven model over 2001–2014 (Zhao et al., 2005), the Max Planck Institute
for Biogeochemistry (MPI-BGC) product using FLUXNET measurements over 1982–2011 (Jung et al., 2011)
and the Breathing Earth System Simulator (BESS) data-driven model (Jiang & Ryu, 2016); (6) a proxy of relative
changes of GPP, given by growing season integrated leaf area index (LAI) variations from three LAI data sets
(Liu et al., 2012; Xiao et al., 2014; Zhu et al., 2013); (7) a proxy of the TER trend from the compilation of field
measurements of soil respiration (Bond-Lamberty & Thomson, 2010); and (8) 5 year mean observation-based
FR values from Global Fire Emissions Database Version 4.1s (Giglio et al., 2013) and from the Reanalysis of the
Tropospheric chemical composition reconstruction (Schultz et al., 2008). Data sets that represent mean
values for a period longer than 5 years constrain the mean fluxes over this period rather than individual
5 year intervals.

The three LAI data sets used as proxies of GPP changes are from Global Inventory Modeling and Mapping
Studies (GIMMS) (Zhu et al., 2013), Global Land Surface Satellites (GLASS) (Xiao et al., 2014), and Long-term
Global Mapping (GLOBMAP) LAI (Liu et al., 2012). They are based on measurements from the same space-
borne instruments (MODIS and advanced very high resolution radiometer) but inferred with different
algorithms (Zhu et al., 2013). Error correlations between these three LAI data sets are challenging to
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quantify, but we cannot assume that the LAI products are independent. Similarly, error correlations between
the three GPP data sets (Jiang & Ryu, 2016; Jung et al., 2011; Zhao et al., 2005) are difficult to estimate, but
they are not independent either, for instance, because they use similar climate fields and/or remote sensing
fields but different algorithms. In this study, we test the nine possible combinations of LAI and GPP as
constraining data, i.e., a combination of only one single GPP product and one single LAI products in each test,
to avoid not correctly accounting for the potential correlations in their uncertainties. Uncertainties in this
study refer to 1-σ Gaussian errors, and CO2 emissions to the atmosphere are defined as positive.

In the Bayesian inference system, we define the “control variables” x as 5 year mean values of F, O, FR, ΔGPP,
and ΔTER from 1980 to 2014 and G0 and T0 during 2005–2009. These control variables are connected to
observation data sets through the observation operator H. The Bayesian inference system allows us to solve
for the optimal estimate of the control variables xa that fit both the prior estimates with their error statistics B
and the constraining data y0 with their error statistics R, by minimizing the cost function (Tarantola, 2005):

J xð Þ ¼ 1
2

x� xb
� �T

B�1 x� xb
� �þ y0 � H x½ �� �T

R�1 y0 � H x½ �� �h i
(1)

where the superscripts T and “�1” indicate the transpose and inverse of a matrix, respectively. The full
configuration of the system is detailed in Text S1.

Five sensitivity tests were performed to evaluate the robustness of our results (see details in Text S2): (1) using
two alternative FR data sets (GFAS (Kaiser et al., 2012) and GICC (Mieville et al., 2010)), (2) removing the soil
respiration constraint, (3) removing LAI constraints, (4) removing influence of prior GPP and TER trends,
and (5) adding the leaf-scale CO2 effects on LUE.

2.2. Anomaly of Carbon Fluxes and Climate Conditions

Anomalies of 5 year fluxes were calculated by removing a linear trend over the seven 5 year periods from
1980 to 2014. The same method was applied to derive anomalies of temperature from GHCN_CAMS (Fan
& van den Dool, 2008) and CRU3.23 (Harris et al., 2014), precipitation from CRU3.23 (Harris et al., 2014), water
availability index (WAI) (Jung et al., 2017; Tramontana et al., 2016), and soil moisture from Climate Prediction
Center (CPC) (Fan & van den Dool, 2004) and the European Space Agency-Climate Change Initiative satellite
products (Dorigo et al., 2010). The ordinary-least-squares method was applied in the multiple regressions of
TER anomalies against GPP anomalies and climate variable anomalies.

3. Results
3.1. Optimized Carbon Fluxes

The optimized mean GPP and TER estimates are lower by about 18 PgC yr�1 compared to prior values
(Figure 1a and Table S2), giving best estimates of GPP = �119 ± 12 PgC yr�1 and TER = 115 ± 12 PgC yr�1

during 1980–2014. Note that here we used the mean values from the nine combinations for the synthesis
results (unless otherwise specified), the values for each combination being provided in Table S4. The reduc-
tion of optimized GPP and TER magnitude from priors is caused by observation-based GPP estimates being
lower than the prior from DGVMs (see values in Tables S2 and S3). For example, the observation-based GPP
during 2000–2004 is�111 ± 21,�119 ± 32, and�122 ± 25 PgC yr�1, respectively, fromMODIS, MPI-BGC, and
BESS, compared to the prior from DGVM models of �140 ± 37 PgC yr�1. Because the sum of TER and GPP
must scale to the observed net land flux, mean TER is also lower than the prior. The uncertainties in GPP
and TER are reduced by 67% from the prior values from DGVMs for each different combination of GPP and
LAI data sets. The optimized FR is 2.3 ± 0.49 PgC yr�1 during 1980–2014, with an SD of 0.30 PgC yr�1 across
the different 5 year periods (Figure 1a). This estimate is 19% less than the prior, and its uncertainty is reduced
by 49% (Figure 1b), reflecting the fact that both observation-based FR data sets are lower than the priors from
the DGVMs (Table S3). Posterior FR shows a significantly declining trend over the entire period (p< 0.05) at a
rate of �0.019 PgC yr�2. The uncertainty reductions for F, O, and B + L (Figures 1c and 1d) are similar with
those obtained by Li et al. (2016), who used the same observational constraints for net fluxes.

The nine different combinations of LAI relative trends and GPP observational constraints result in differ-
ent optimized GPP and TER (coefficient of variation = 3.9% and 4.0%). The optimized GPP during 1980–
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2014 using MODIS, MPI-BGC, and BESS GPP as constraints are �113 ± 11, �121 ± 11, and �123 ± 13
PgC yr�1, respectively.

3.2. GPP and TER Trends

In all the nine tests, GPP and TER show a positive trend during 1980–2014 (Figure 2 and Table S5). The poster-
ior trend of GPP is 0.18 ± 0.02 PgC yr�2 (mean and SD across the 9 tests), and the trend of TER is
0.16 ± 0.01 PgC yr�2. The posterior trends are about half the prior trends from the DGVMs (0.40 ± 0.02 and
0.34 ± 0.02 PgC yr�2, respectively, for GPP and TER). Although using different GPP observation-based data
sets changes the mean values of optimized GPP and TER, it has little impact on their trends for a given LAI
data set (Figure 2). By contrast, different choices of LAI data sets have a larger impact on the optimized
GPP and TER trends (Table S5).

Across the nine tests, there is a significant (p < 10�5) increase of both GPP and TER in the first and the last
decade. During 1990–2004, using GIMMS LAI data produces a nearly flat GPP and a small increase of TER
(Figures 2a, 2d, and 2g), while using GLASS LAI produces a persistent increase of both GPP and TER
(Figures 2b, 2e, and 2h). This is mainly caused by the different relative LAI changes from these two data sets
for this period (Table S3). In contrast to the prior trend, optimized TER shows a stalled growth between 1985
and 1994 (and even a decrease in five out of nine tests) and between 2000 and 2009 (Figure 2, vertical shaded
areas). These periods coincide with the climate cooling that followed the Pinatubo eruption (Lucht et al.,
2002) and the warming hiatus (Kosaka & Xie, 2013; Nieves et al., 2015). Five-year mean TER shows a
larger temporal variability than GPP, possibly reflecting a higher sensitivity of TER to 5 year mean changes
in climate. In fact, TER shows a faster rebound after each period of temperature stability or relative cooling,
i.e., 0.30 ± 0.10 PgC yr�2 (average of the nine combinations in Figure 2) after 1990–1994 (Pinatubo) to
1995–1999 and 0.40 ± 0.07 PgC yr�2 after 2005–2009 (hiatus). By comparison, GPP only increased by
0.10 ± 0.12 and 0.34 ± 0.08 PgC yr�2 during the same intervals (Table S2). This difference between GPP
and TER increase after the two 5 year periods with slower warming is significant (p < 10�5) across the nine
tests. The larger TER increases than GPP after each slower warming period results in a reduction of net land
sink (see B + L values in Table S2).

3.3. Detrended Anomalies

DGVMs generally produce anomalies different from those of posterior fluxes (Figures 3a and S2). GPP
anomalies from observation data sets (filled markers in Figure 3a) are within the range of posterior GPP

Figure 1. The prior and posterior fluxes in our optimization: (a) gross primary production (GPP, shown as reversed sign) and
terrestrial ecosystem respiration (TER), (b) fire emissions (FR), (c) the fossil fuel and cement emissions (F), and (d) the
ocean sink (O) and net land flux (B + L). All the fluxes given as the means of the nine tests using different combinations of
LAI and GPP data sets in each 5 year period. The error bars represent the 1-σ uncertainties.
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anomalies except MPI-BGC GPP in 1980–1984, 1995–1999, and 2000–2004. In the early 1990s (Pinatubo
eruption), B + L shows a strong enhancement (lime-colored box during 1990–1994 in Figure 3a), which we
attribute mainly to a reduction of TER (strong negative anomaly) adding to a small increase of GPP (small
negative anomaly with our sign convention). Note that DGVMs miss the intensified land uptake during this
period, either because they do not include diffuse light effects or because the forcing data for the TRENDY
project do not include the reduction in net shortwave radiation as a result of increased stratospheric
aerosols from the Pinatubo eruption (Mercado et al., 2009; Roderick et al., 2001).The enhanced net land
sink during 2005–2009 is also attributed to a reduced TER rather than to an increase of GPP.

We regressed anomalies of optimized GPP and TER against anomalies of climate (Figure S3) for each 5 year
period. This allows to characterize quasi-decadal sensitivities of gross fluxes to climate. Despite small varia-
tions of global temperature when considering 5 year averages, a significant correlation (p< 0.005) was found
between GPP and temperature anomalies (Figures 3b and S3a and S2b). Correlations between TER and tem-
perature anomalies were not significant. B + L and FR did not show strong correlations with temperature for
5 year anomaly either. Anomalies of precipitation, WAI, and soil moisture do not exhibit significant correla-
tions with either GPP or TER anomalies (Figures S3c and S3d), probably due to the compensatory water
effects at biome spatial scales (Jung et al., 2017). FR anomalies are negatively correlated with soil moisture
anomalies (p < 0.05; Figures S3e and S3f).

It looks contradictory at first glance that TER stalled during periods of decelerated warming while TER anoma-
lies do not significantly correlate with temperature anomalies over the whole record. One possible reason is
that TER also depends on biomass, litter, and soil organic carbon available from GPP of the previous years,

Figure 2. The prior and posterior GPP (shown as reversed sign) and TER using different combinations of LAI and GPP data
sets as constraining data (a-i). The horizontal shaded areas represent the posterior uncertainties. The prior uncertainties
(same as those in Figure 1a) are large and thus are not shown in a-i for better visual effects. The vertical shaded areas
indicate the two slow warming periods. The probability distribution functions of prior and posterior GPP and TER (mean
values over 1980–2014) are shown on the right (j). For posterior GPP and TER in j, the dashed, solid, and dotted lines
indicate the optimized fluxes using MODIS, MPI-BGC, and BESS GPP, respectively, as constraints (mean values of results
from three LAI data sets for each GPP data set).
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with short residence times in leaf and root pools (Malhi et al., 2011) that couple TER anomalies to GPP
anomalies on a 5 year time scale. We thus conducted a multiple regression of TER anomalies against
anomalies of both GPP and temperature. The regression coefficients to GPP and temperature anomalies
are all significant (p < 0.05; Table S6). By contrast, the regression coefficients were not significant using the
prior TER and GPP estimates from TRENDY models (Table S6). The R2 of TER to GPP and temperature also
improves from 0.68 using priors to 0.84 using posteriors. The coefficients of dependent variables using
posterior values suggest that a reduction of TER is associated with both lower GPP anomalies and cooler
temperature anomalies. These results, however, should be interpreted with caution given the small sample
size (N = 7), the small anomalies of 5 year mean temperature, and nonrobustness across different tests
(Table S6). It would also be expected that GPP and autotrophic respiration may be positively correlated in
a given year, but GPP may be more highly correlated with heterotrophic respiration in subsequent years.

3.4. Sensitivity Tests

Replacing FR data sets with GFAS (Kaiser et al., 2012) and GICC (Mieville et al., 2010) increases the optimized
FR by 0.25 ± 0.14 PgC yr�1 (mean and SD across seven 5 year periods) compared to the original nine tests but
still within the uncertainty range. This sensitivity test has very small impacts on the estimates of GPP and TER
and their trends (Figure S4a and Table S5). Removing the observational constraint from the soil respiration
data set of Bond-Lamberty and Thomson (2010) increases the posterior trends of GPP and TER closer to
the prior trends (Table S5). Although the soil respiration data seem to partly drive the inferred reduction of
the trends of GPP and TER during 1980–2014, they are only critical to the change from 1990–1994 to
1995–1999. A large jump of optimized GPP and TER is found without the Bond-Lamberty and Thomson
(2010) data (Figure S4b) because the relative change of GPP is not well constrained by observed LAI during
this period. By contrast, the soil respiration data have little influence on the optimized GPP and TER values
before 1995 and after 2000 and on the TER stalling during the relatively cooler periods of Pinatubo and

Figure 3. Detrended anomalies of (a) carbon fluxes and (b) temperature. The whisker-box plot indicates the range, inter-
quartile, and mean of posterior values from the nine tests. Different markers represent prior mean values from TRENDY
models and observation-based GPP values. Note that fluxes to the atmosphere are defined as positive, which means a
negative anomaly of GPP or B + L indicating an increase of GPP and land sink while a negative anomaly of TER and FR
indicating a decrease of TER and FR.
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Hiatus periods (Figure S4b). The LAI data have a relatively small impact on the reduction of the overall trends
from priors but determine TER stalling during the Pinatubo and Hiatus periods (Table S5 and Figure S4c).
Without contributions from prior trends, the optimized trends become flat and nonsignificant (Table S5
and Figure S4d). When accounting for theoretical CO2 effects on LUE based on Keenan et al. (2016), the trends
of optimized GPP and TER during 1980–2014 increased from the original values but remained lower than the
prior trends from DGVMs (Table S5 and Figure S4e). In particular, the stalling of TER during the two relatively
cooler periods is robust to the inclusion of CO2 effects on the increase of LUE (Figure S4e). Note that our the-
oretical estimate of the LUE sensitivity to CO2 does not include limitations like nutrient and climate change,
and thus should be cautiously interpreted. On the other hand, CO2 effects on LAI trends modulated by
climate and nutrients are implicitly included in LAI observations (for CO2 partial contribution to LAI greening,
see for instance Zhu et al., 2016).

4. Discussion

In general, the reduction in GPP and TER long-term trends compared to prior trends is driven by the soil
respiration data set of Bond-Lamberty and Thomson (2010) and the relative LAI changes. Regarding quasi-
decadal changes, the soil respiration data mainly constrain the change from 1990–1994 to 1995–1999 while
the LAI data constrain changes during other periods. During 1990–1994 (Pinatubo eruption), we infer a stal-
ling of TER that supports the previously reported TER reduction due to the high-latitude cooling that followed
the eruption (Lucht et al., 2002). The hypothesis of higher photosynthesis from increased diffuse light fraction
after the volcanic eruption (Gu et al., 2003; Mercado et al., 2009; Roderick et al., 2001) also partly explains the
B + L enhancement during this period. Our findings of reduced TER during Pinatubo and warming hiatus per-
iods are consistent with the conclusions of Keenan et al. (2016) and Ballantyne et al. (2017) using different
approaches. Keenan et al. (2016) reported a slowdown in the temperature-driven ecosystem respiration
during the past decade, using a satellite-driven photosynthesis-respiration model. Ballantyne et al. (2017) cal-
culated TER as a difference of GPP and net biome productivity based on satellite and atmospheric observa-
tions and the net land sink from the global carbon budget, and also inferred a reduction of TER during the
Pinatubo and the hiatus periods. They further attributed the reduction of TER to the stalling temperature
and decreasing soil moisture using an empirical soil respiration model (Ballantyne et al., 2017). However,
Ballantyne et al. (2017) inferred a stronger relationship between TER and temperature than between GPP
and temperature on interannual time scale, which is different from our results for quasi-decadal scales.
This difference may be because they calculated TER as a difference between GPP and the net land sink, while
we used separate observation constraints on GPP, TER, and on other land carbon fluxes. Additionally, our
study has a relatively small sample size (N = 7 from 1980 to 2014), and thus, all correlations regardless of sig-
nificance should be interpreted with caution.

Due to differences in the observation-based GPP data sets (Table S3), optimized mean values of GPP and TER
are different. By contrast, trends and quasi-decadal responses to climate are consistent between different
combinations and robust to the choice of a GPP or LAI observation (Figure 2). Our results suggest that simu-
lated trends of GPP and TER in current DGVMs are increasing too rapidly over the last three decades.
However, the strong negative correlations between uncertainties in posterior GPP and TER (Figure S5) imply
that current observation-based data are still inadequate evidence to fully decouple the gross fluxes of GPP
and TER.

We used the relative change of LAI (growing season average) to constrain the relative change of GPP. We are
aware that a change of 1% in LAI does not imply a change of 1% in GPP because a simple LUE model approx-
imates GPP = LUE × PAR × fAPAR and fAPAR = 1 � e�0.5 × LAI at local level (Walther et al., 2016), where PAR
and fAPAR indicate photosynthetically active radiation and fraction of PAR absorbed by canopies. Even with
constant LAI implying constant fAPAR, PAR trends (Dee et al., 2011) can produce GPP trends (Figure S6)
although this may have minor contributions to the interannual variability of carbon fluxes (Jung et al.,
2017). LUE of plant canopies may also vary over time (e.g., due to rising CO2), which partially explains the
lower posterior GPP trends than DGVMs. In the sensitivity test that accounted for the theoretical CO2 effects
causing LUE to increase, optimized GPP and TER show larger increasing trends than the original nine tests
but still below DGVM priors, and the inferred TER stalling during the two relatively cooler periods is robust
(Figure S4e). The growing season LUE defined as NPP/(PAR × fAPAR) from DGVMs was also found to
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increase under increasing CO2 (Thomas et al., 2016). Keenan et al. (2016) compared different drivers of GPP
change and showed that indirect effects of fAPAR on GPP change during 1980–2012 diagnosed from their
photosynthesis-respiration model is about half of the direct effects of CO2 inferred from TRENDY models
and water availability has little influence on GPP change (Keenan et al., 2016). However, these two
approaches (Keenan et al., 2016; Thomas et al., 2016) do not necessarily match the observed CO2 growth rate
and net land sink and whether DGVMs overestimate (Kolby Smith et al., 2015) or underestimate (Thomas
et al., 2016) CO2 fertilization effects still remains uncertain. Our approach of attributing net land sink to
GPP and TER, on the other hand, is fully consistent with these observations; i.e., the optimized GPP and
TER are constrained not only by LAI relative trends but also by other observations like G0 and net carbon
fluxes that includes the effects of LUE changes. In addition, the correlations between annual/5 year
mean GPP and growing season LAI and between relative changes of GPP and growing season LAI on any
5 year intervals are both very strong in the DGVMs (Figure S7), suggesting that growing season-integrated
LAI is a good proxy of GPP. Note that we infer that this relationship between relative changes of GPP and
growing season LAI is strong from DGVM result examination, but we use observations of these two quantities
in the optimization, not DGVM results. The relationship between relative changes of 5 year mean GPP from
MPI-BGC and LAI from GIMMS seems also linear (Figure S7c), but it should not be overinterpreted because
unlike DGVMs (Figures S7a and S7b), the observation-based GPP and LAI data sets are not corresponding
to each other.

A single soil respiration trend (Bond-Lamberty & Thomson, 2010) was used to constrain TER trend for the
period of 1990–2010. This data set mainly poses a constraint on the relative change of TER from 1990–
1994 to 1995–1999 (sensitivity test 2; Figure S4b). Global soil respiration estimated by Bond-Lamberty
and Thomson (2010) (98 ± 12 PgC) accounts for about 85% of the optimized TER in our study, suggesting
that the aboveground autotrophic respiration, not included in soil respiration, comprises a small fraction of
the TER. To avoid the biases, we only adopted the trend rather than the absolute soil respiration value as a
constraint and used a relatively larger uncertainty of this trend (Table S3). This observed soil respiration
trend (0.10 PgC yr�2) is also consistent with the inferred TER trend (0.11 PgC yr�2) from Ballantyne
et al. (2017).

Our Bayesian fusion approach constrains gross and net fluxes with various observational data sets and pro-
vides insight about multiyear variability in gross fluxes and the underlying processes that have affected the
net land sink. The trends of 5 year mean GPP and TER reflect both decadal climate variability and long-term
drivers such as the increasing concentration of CO2, nitrogen deposition and changes in land use and in nutri-
ent limitations. It is not possible with our global approach to infer which region was responsible for the stal-
ling of TER during the two periods with a slower warming. Possible explanations for the reduced GPP and TER
trends when constrained by the observations may involve either emerging biogeochemical limitations partly
absent from DGVMs (e.g., reduced nitrogen deposition in some regions like North America and Europe or
emerging nutrient limitations (Davidson et al., 2011; Tørseth et al., 2012)) or the slower warming at high
northern latitudes especially in winter and spring (Cohen et al., 2012) resulting in both less respiration or
reduced photosynthetic uptake. Combining spatially explicit observations to constrain process-based carbon
cycle models, as done, e.g., in carbon cycle data assimilation systems (Peylin et al., 2016; Rayner et al., 2005)
should provide more insights about the regional processes. Considering the larger sensitivity of TER than GPP
to resumed future surface warming, this combination is expected to strongly reduce the sink strength of land
ecosystems and would require stronger mitigation of anthropogenic emissions to keep global warming
below 1.5°C.
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