995 research outputs found

    THE ROLES OF GLI3 IN MURINE EMBRYONIC MAMMARY GLAND DEVELOPMENT

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Pluripotent human embryonic stem cell derived neural lineages for in vitro modelling of enterovirus 71 infection and therapy

    Get PDF
    The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. Results: Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SHSY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics

    A finite strain nonlinear human mitral valve model with fluid structure interaction

    Get PDF
    A simulated human mitral valve under a physiological pressure loading is developed using a hybrid finite element immersed boundary method, which incorporates experimentally based constitutive laws in a three-dimensional fluid-structure interaction framework. A transversely isotropic material constitutive model is used for characterizing the mechanical behaviour of the mitral valve tissue based on recent mechanical tests of healthy human mitral leaflets. Our results show good agreement, in terms of the flow rate and the closing and opening configurations, with the measurements from the magnetic resonance images. The stresses in the anterior leaflet are found to be higher than those in the posterior leaflet, and concentrated around the annulus trigons and free edges of the valve leaflets. Those areas are located where the leaflet has the highest curvature. Effects of the chordae tendineae in the material model are studied and the results show that these chordae play an important role in providing a secondary orifice for the flow when valve opens. Although there are some discrepancies to be overcome in future works, our simulations show that the developed computational model is promising in mimicking the in vivo mitral valve dynamics and providing important information that are not obtainable by in vivo measurements. This article is protected by copyright. All rights reserved

    Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and In Vitro Disease Modeling

    Get PDF
    Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs

    Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression

    Get PDF
    Chemotherapeutic drug treatment can result in the emergence of drug-resistant cells. By culturing an interleukin-3 (IL-3)-dependent cell line, FL5.12 cells in the presence of the chemotherapeutic drug doxorubicin, we isolated FL/Doxo cells which are multi-drug resistant. Increased levels of drug efflux were detected in FL/Doxo cells which could be inhibited by the MDR1 inhibitor verapamil but not by the MRP1 inhibitor MK571. The effects of TP53 and MEK1 were examined by infection of FL/ Doxo cells with retroviruses encoding either a dominant negative TP-53 gene (FL/ Doxo+ TP53 (DN) or a constitutively-activated MEK-1 gene (FL/Doxo + MEK1 (CA). Elevated MDR1 but not MRP1 mRNA transcripts were detected by quantitative RT-PCR in the drug-resistant cells while transcripts encoding anti-apoptotic genes such as: BCL2, BCLXL and MCL1 were observed at higher levels in the drug-sensitive FL5.12 cells. The percentage of cells that were side-population positive was increased in the drug-resistant cells compared to the parental line. Drug-resistance and side- positive population cells have been associated with cancer stem cells (CSC). Our studies suggest mechanisms which could allow the targeting of these molecules to prevent drug-resistance

    Towards a global partnership model in interprofessional education for cross-sector problem-solving

    Get PDF
    Objectives A partnership model in interprofessional education (IPE) is important in promoting a sense of global citizenship while preparing students for cross-sector problem-solving. However, the literature remains scant in providing useful guidance for the development of an IPE programme co-implemented by external partners. In this pioneering study, we describe the processes of forging global partnerships in co-implementing IPE and evaluate the programme in light of the preliminary data available. Methods This study is generally quantitative. We collected data from a total of 747 health and social care students from four higher education institutions. We utilized a descriptive narrative format and a quantitative design to present our experiences of running IPE with external partners and performed independent t-tests and analysis of variance to examine pretest and posttest mean differences in students’ data. Results We identified factors in establishing a cross-institutional IPE programme. These factors include complementarity of expertise, mutual benefits, internet connectivity, interactivity of design, and time difference. We found significant pretest–posttest differences in students’ readiness for interprofessional learning (teamwork and collaboration, positive professional identity, roles, and responsibilities). We also found a significant decrease in students’ social interaction anxiety after the IPE simulation. Conclusions The narrative of our experiences described in this manuscript could be considered by higher education institutions seeking to forge meaningful external partnerships in their effort to establish interprofessional global health education

    The novel proteins Rng8 and Rng9 regulate the myosin-V Myo51 during fission yeast cytokinesis.

    Get PDF
    The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions
    corecore