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Highlights
Solvent-driven aqueous separations
enable resource recovery and zero liquid
discharge desalination from hypersaline
or contaminated aqueous brine, miti-
gating environmental impacts of brine
disposal.

Promising solvents include thermo-
responsive and volatile organic solvents,
which selectively solvate water while
dissolving minimally into the aqueous
retentate; critical materials, including
transition and lanthanide metals, may
be recovered simultaneously through
fractional crystallization.

Effects of intermolecular interactions
and phase kinetics that control macro-
scopic separation efficacy are identified
to elucidate key process-level design
considerations for energy-efficient
Solvent-driven separation processes can extract water and high-value minerals
from high salinity or contaminated brines, simultaneously reducing the environ-
mental impact of brine disposal and enabling resource recovery. The efficient
dewatering of hypersaline brines is essential for the sustainable minimal and
zero liquid discharge processing of industrial wastewaters. Fractional crystalliza-
tion can selectively extract ions from contaminated waste streams, allowing
critical materials to be recycled, including transition and lanthanide metals
required for renewable energy generation and storage. Mass transfer in solvent-
driven water extraction occurs across a liquid–liquid interface, eliminating the
scaling and fouling of membrane and heat exchanger surfaces and limiting the
need for extensive pretreatment. Solvent-driven fractional crystallization can
leverage sequential treatment and control of process conditions to rapidly recover
salts without requiring evaporation of water. Despite promising applications, the
principles and potential of solvent-driven aqueous separations remain poorly
understood. This critical review explores the opportunities presented by solvent-
based aqueous separations from the molecular to process scale, evaluating the
chemistry of solvation and system design in the broader context of desalination,
resource recovery, water softening, and mineral production.
solvent-driven aqueous separations.

Solvent regeneration processes bypass
traditional limitations associated with
direct water vaporization and membrane
separation. Process optimization is
evaluated in terms of recycled sensible
heats, reducing net energy consumption
while mitigating solvent depletion.
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Motivations for solvent-driven separations
Population growth, climate change, and rising economic standards are rapidly exacerbating
resource scarcity [1]. Globally, water stress has a cascading impact on several critical resources,
including the irrigation of farmland for food production, the manufacturing of photovoltaics for
clean energy generation, and the extraction of metals for batteries and magnets. Aqueous
water–salt and ion–ion separations play a central role in alleviating water scarcity, by augmenting
and protecting freshwater supplies and by maximizing resource recycling from industrial waste
streams. Sustainable water management and resource recovery systems must be energy,
atom, and carbon efficient, to minimize environmental impact [2].

Freshwater supplies can be augmented using nontraditional sources, including saline aquifers,
high total dissolved solids (TDS) (see Glossary) surface waters, municipal wastewaters, and
aqueous industrial wastes. Fresh water can be produced from these sources with membrane
systems such as reverse osmosis (RO), the most widely used and generally the most energy
efficient desalination technology [3]. Currently, RO is extensively employed in brackish and
seawater desalination. However, the hydraulic pressure limitations of conventional RO restrict
the feed TDS levels to be under ~70 000 ppm, although emerging variants of RO may accept
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somewhat more saline feed streams (up to 150 000 ppm TDS) [4,5] with proper softening.
Another bottleneck for RO is brine disposal, especially from inland desalination plants, which
requires environmentally responsible discharge to unlock these nontraditional sources
[6,7]. Industrial activity also creates a wide spectrum of solute-containing chemical wastes.
Often, these waste streams can contain valuable minerals and organic compounds, but are
near saturation, prone to scaling, and otherwise incompatible with conventional membrane
processes [8,9]. Accessing critical materials dissolved in these saline streams is a key step
towards realizing a circular economy of water and minerals, while alleviating existing resource
stress.

Thermal distillation is the predominant approach to desalinate hypersaline brines, including
complete dewatering for zero liquid discharge (ZLD) [10–13]. However, evaporative technologies
have low thermodynamic efficiency as a result of unavoidable entropy production in economically
sized heat exchangers [14]; additionally, most evaporative technologies are challenged by scaling
and corrosion on the surfaces of heat exchangers [15]. Alternative proposed technologies for
treating hypersaline streams include forward osmosis (FO), membrane distillation (MD) [16], electro-
dialysis [17], high-pressure RO [18], cascading osmotically mediated RO, and counterflow RO [19].
Unfortunately, these technologies are all based on membrane separations. Hence, they are likely to
be afflicted by the aforementioned practical problems, particularly degraded performance as
contaminants accumulate on the membrane surface.

In the implementation of hypersaline brine desalination, solvent-based technologies are an
emerging class of aqueous separationswith two notable advantages over traditional approaches:
(i) they are not constrained by the practical limitations of membrane systems, and (ii) they avoid
the high latent heat of vaporization of water during extraction and regeneration. Conceptually,
solvents can be used in two distinct processes: either in: (i) solvent-driven water extraction
(SDWE) (Figure 1A); or in (ii) solvent-driven fractional crystallization (SDFC) (Figure 1B).

In SDWE desalination (Figure 1A), the solvent selectively solvates water over salt through direc-
tional solubility, thereby extracting water into the organic-rich phase (dark blue phase) while
retaining the inorganic salts in the aqueous-rich phase (green phase). Subsequently, to recover
the extracted water, less energy-intensive phase transitions based on solvent–water liquid–liquid
equilibrium (LLE) or vapor–liquid equilibrium (VLE) can be leveraged in place of conventional
evaporative technologies [20–22]. The selective extraction of water into the organic phase drives
the aqueous phase toward saturation, inducing precipitation of inorganic minerals from the brine
at solid–liquid equilibrium (SLE). Recent studies demonstrate that solvent extraction can recover
water from hypersaline brines (~200 000 ppm TDS) and can be designed to achieve ZLD and
simultaneously recover valuable minerals [21,23,24].

In SDFC, as illustrated in Figure 1B, a water-miscible solvent (dark blue phase) is used to induce
solute saturation (SLE) in an aqueous solution (green phase). Unlike SDWE, the liquid portion
of the mixture remains a single phase from which precipitated solids are isolated. Empirical
studies suggest that target solutes can be precipitated by the organic solvent on a near one-
to-one molar basis, allowing for efficient solute recovery with minimal solvent addition [23]. In
practice, SDFC can be used to efficiently recover critical materials from industrial wastewater
streams, recycle materials like nickel and cobalt, or produce lithium and other inorganic ions
from hypersaline brine. As compared with conventional solvent extraction and ion exchange
treatments, the adverse environmental impact from these raw material extractions [25] can
be minimized due to reduced volumes of liquid waste residuals [26] and the reduced usage
of consumable reagents [27].
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Glossary
Anti-solvent crystallization: a
process bywhich a solvent, commonly a
molecular liquid, is used to precipitate a
solute from a solution. The anti-solvent
promotes solute crystallization due to
the poor solubility of precipitated solute.
Recent analyses suggest, however, that
this solvation mechanism is incomplete
and is unable to account for the solute’s
behavior at low concentrations.
Desalination: a process by which
purified water is separated from an
aqueous salt solution. Commercial
technology is dominated by reverse
osmosis for feed solutions with salt
concentration up to up to 4 wt%.
Hypersaline brine: an aqueous
solution with concentrations (total
dissolved solids) greater than the ocean,
generally ranging from 3.5 to 30.0 wt%
(35 000–300 000 ppm). In the context of
water treatment, hypersaline solutions
typically have concentrations greater
than ~7.0 wt% and require treatment
technologies beyond those typically
used for sea water desalination.
Ionic liquid: a solvent comprising salt in
the liquid state. By selecting the
appropriate molecular ions, ionic liquids
can be hydrophilic or hydrophobic and
feature water solubilities that are thermal
responsive.
Raffinate: a liquid residual or
by-product from impurity removal by
solvent extraction.
Reverse osmosis (RO): a
pressure-driven process in which a
semi-permeable membrane is used to
separate water from an aqueous
solution. The membrane is usually made
of a thin layer of aromatic polyamide that
is hydrophilic.
Solvent depletion: any pathway by
which useful solvent is lost, including
entrainment in products (water,
solutions, and solids), volatile losses to
the atmosphere, and chemical
contamination/degradation caused by
the operating environment or conditions
that renders the degraded solvent
unusable.
Solvent-driven fractional
crystallization (SDFC): a process by
which a solvent dissolves into a
concentrated aqueous solution,
inducing the crystallization of salt
fractions contained therein.
Solvent-driven water extraction
(SDWE): a process by which a solvent
selectively removes water from an
aqueous brine, simultaneously
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In this review, we explore the chemistry of solvent-driven aqueous separations and analyze the
material classes and solvent regeneration mechanisms that have been studied to date.
Using a molecular- to system-scale approach based on state-of-the-art chemical theories, we
discuss the effects of intermolecular interactions, solution thermodynamics, and kinetics that
control macroscopic separation efficacy. Molecular-level understanding is then used to elucidate
key process-level design considerations necessary for energy-efficient extraction and solvent
regeneration. Finally, we highlight important areas of future research that may accelerate the
development and adoption of effective solvent-driven aqueous separations for water extraction
and resource recovery from brines.

Water extraction for desalination and brine concentration
A historical overview of SDWE
SDWE (Figure 1A) was reported in the literature as early as 1953 by Davison and Hood [28,29],
underwritten by the United States Government’s Office of Saline Water. While initial develop-
ments of solvent-driven desalination were demonstrated at the pilot scale in 1964 [29], the tech-
nology was never fully commercialized. The development of the Puraq process in the 1980s
revived interest in the field [30]; this was followed by advancements in directional solvent extrac-
tion (DSE) by Chen [31], application of ionic liquids for DSE desalination [22,32–34], and water
softening and desalination with thermally responsive solvents by Yip [21,35] and others
[36–44]. Water extraction processes using multiple and/or mixed solvents have also garnered
recent industrial interest [45,46]. The spectrum of solvent functional groups explored for SDWE
and SDFC is summarized in Figure 2.

Thermally responsive solvents for water extraction
In desalination, solvents used for directional or temperature-swing extraction exhibit a strong
temperature-dependent solubility of water (i.e., they display thermo-responsive or thermo-
morphic solubility of water, while having a limited solubility in water). Detailed working principles
of this liquid–liquid extraction process can be found in the literature [21,30,31,47–51] and are
summarized here.

In the extraction step, the thermo-responsive solvent contacts a brine at a favorable temperature
for water extraction, functioning as a liquid desiccant. At thermodynamic equilibrium, the
two liquids (i.e., aqueous brine and organic solvent) are not fully miscible and form bilayered
liquid phases [21,35,52]. After the water-laden organic solvent is physically separated
from the raffinate (in this case, a concentrated brine), an induced temperature change
decreases the solubility of water in the organic solvent phase. The extracted water thereby
demixes and stabilizes to form an immiscible layer of desalinated product water. Depending
on the organic solvent’s properties, the solubility of water in the organic solvent can increase or
decrease monotonically with temperature or display an asymptotic behavior beyond a critical
temperature.

An ideal directional solvent should have a high water solubility that is acutely sensitive to tempera-
ture changes, such that a moderate temperature swing would produce a large yield of desalinated
water. To achieve desalination, these solvents require high solvation selectivity for water over
dissolved ions in the brine (i.e., a low salt solubility in the organic solvent). To suppress the
undesirable solvent loss to the aqueous raffinate and product water streams, low solubility of
the organic solvent in water is imperative (Figure 3A); this stark difference in mutual solubility
between the organic solvent and water is the basis of directional solubility. Operationally, the
solvent should be thermally stable to allow for solvent recycling between extraction and
demixing temperatures.
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concentrating the brine and inducing the
precipitation of dissolved solids.
Solvent regeneration: a process by
which the product water (or solution) is
removed and the solvent (or a solvent-
rich composition) is recovered for reuse.
Thermal distillation: a process by
which water is vaporized and separated
from an aqueous solution using thermal
energy from a heat source, driven by the
volatility difference between the solvent
and the solutes.
Thermally responsive solvent: a
solvent whose physical and chemical
properties alter significantly with
temperature; the present work focuses
on temperature-dependent changes in a
solvent’s ability to dissolve water.
Total dissolved solids (TDS): a
measure of the content of dissolved
solutes in a liquid. Solutes can include
common salts and minerals such as
sodium chloride and dissolved silica and
critical minerals such as cobalt sulfate.
Volatile organic solvent (VOS): a
carbon-based molecular solvent with a
high vapor pressure, indicative of a low
boiling point.
Zero liquid discharge (ZLD): a
process that converts an aqueous
waste solution into purified water and a
solid product or solid waste.
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To date, a wide range of solvents demonstrating temperature-dependent solubility of water have
been investigated for solvent-driven desalination, including alcohols [47,48], aliphatic acids [31,50],
amines [35,51], epoxide-based polymers [30], ethers [23,52], and ionic liquids [22,33,34]. These
organic solvents possess hydrophilic moieties that form hydrogen bonds and other polar interac-
tions between the extracting solvent and water molecules, allowing for selective solvation of water
from the brine. To enable the formation of biphasic mixtures at equilibrium, the solvent and brine
must not be highly miscible. The desired phase separation is usually accomplished by selecting
solvents with hydrophobic hydrocarbon substituent groups, which can sterically hinder the intermo-
lecular interactions with water molecules. Further, in systems where directional bonding facilitates
solubility of water, the intermolecular directional bonds can be entropically disrupted at higher
temperatures [53–55]. For example, the hydrogen bond between water and an organic amine
facilitates solubilization of water at low temperature; as temperatures increase, these bonds are
broken, leading to reduced solubility and even lower-critical solution temperature behavior in
some systems [56,57]. The relevant bonds can also be modified via inductive or conjugated
electron donation to the bonding lone pair. For example, replacing a proton on an amine with
an electron-donating unconjugated aliphatic group yields stronger hydrogen bonds with water.

To derive fundamental thermodynamic insights for water-organic liquid–liquid phase equilibria,
molecular modeling with molecular dynamics simulation [22,58–60] and grand canonical Monte
Carlo simulations have been extensively explored [61–64]. The intermolecular and interionic
attractions can be parameterized based on free-energy formulations derived from density
functional theory, or mathematically described using molecular force fields [62,65].

While existing empirical potentials cannot fully represent the spectrum of organic solvents explored in
SDWE, they elucidate structure–function relationships between the equilibrium phase properties of
solvent–water mixtures and themolecular structure and composition of the solution. In particular, ste-
ric hindrance effects are shown to be temperature-dependent (e.g., the free rotation of alkyl groups
increases at higher temperatures), which can desirably heighten the sensitivity of the water dissolution
in response to heat [35,54,56,66,67]. In such systems thermally driven molecular motion interrupts
the hetero-interactions between water and solvent, reducing water dissolution in the solvent with
Solvent-driven water extraction Solvent-driven fractional crystallization(B)(A)
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Figure 1. Schematic process diagrams for practical implementation of solvent-driven separation processes. Simplified schematic process diagrams of
(A) solvent-driven water extraction (SDWE) and (B) solvent-driven fractional crystallization (SDFC). The incoming hypersaline brine (green solution) contacts the recycled
organic solvent (dark blue) and attains liquid–liquid and solid–liquid phase equilibria for SDWE and SDFC, respectively. In SDWE, the water-rich organic phase is
siphoned out and regenerated through a temperature or pressure swing and the product desalinated water (light blue) is collected. In SDFC, the settled solid slurry
(light yellow) is collected and passed for post-treatment.
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Figure 2. Solvent chemistry and functional groups relevant for solvent-driven water extraction and fractional
crystallization. Solvent molecules investigated for solvent-driven separation processes in the literature, including:
(A) polyvinylpyrrolidone-vinyl acetate (PVP/VA), (B) N,N-dimethylcyclohexylamine, (C) 1-butanol, (D) aliphatic carboxylic acid,
(E) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, (F) dimethyl ether, (G) diisopropylamine, (H) acetone,
(I) 1,4-dioxane, (J) ethylamine, (K) ethanol, (L) polyethylene glycol. Solvents with polar functional groups capable of hydrogen
bonding are selected to enhance water–solvent interactions. This is balanced against the nonpolar functionality of the
hydrocarbon substituents to ensure the formation of a biphasic mixture and facilitate solvent recovery from water at equilibrium.
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increased temperature. Directional homo-interactions between solvent molecules can be disrupted
by increased temperature, enhancing water dissolution in the solvent. For instance, with carboxylic
acids, increasing temperatures can disrupt the stable dimers between organic carboxylic acid [68]
molecules, allowing for more interaction with water. Thus, the solubility of water in a variety of aliphatic
carboxylic acids increaseswith temperature. Simultaneously, the homo-bonding betweenwatermol-
ecules weakens at higher temperatures, making it more conducive to solubilization with an organic
system [69]. Ionic liquids, on the other hand, can exhibit temperature-driven phase changes across
a lower or upper critical solution temperature [22,70,71]. Consequently, they can display enhanced
water miscibility with temperature increase or decrease.

The mechanism of salt selectivity of the organic solvent is more nuanced. Thermodynamic
mechanisms have been proposed to explain the observed differences in salt solubilities, including
the affinity of ions for the higher dielectric constant of the water as compared with the extracting
solvent [31]. A detailed mechanistic understanding of salt rejection and water selection, via roles
played by solvent structure and ion properties, would benefit the design and selection of solvents
for water extraction [49].

Volatile organic solvents for water extraction
As an alternative to exploiting the temperature sensitivity of water solubility in solvents, the large
volatility differences between water and aprotic organic solvents can be leveraged to allow for
rapid and efficient separation of the water–solvent mixtures; in other words, exploiting the VLE
behavior in place of temperature-dependent LLE. In these systems, the volatile organic solvent
(VOS), which can be largely vapor at standard temperature and pressure, are first pressurized
and liquefied before contacting the incoming saline feed in a liquid–liquid extraction system.
The chemistry of selective solvation for VOS systems is like that of the thermo-responsive
solvents: a portion of the water from the saline feed is selectively solvated into the organic
1082 Trends in Chemistry, December 2022, Vol. 4, No. 12
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phase, while NaCl and other dissolved ions are retained in the aqueous phase due to the low
polarity of the organic solvent. The water-laden organic phase is siphoned off and passed into
a solvent regeneration system, where the organic solvent is stripped and recycled, yielding a
purified water stream. The high vapor pressure of VOS enables the use of ultra-low-grade or
‘waste’ heat sources (<50°C) during solvent regeneration; the low VOS boiling points can be
leveraged to minimize fugitive solvent losses in the concentrated aqueous brine by a pressure
swing beneath the solvent’s saturation pressure.

To facilitate water–VOS separation from the organic and aqueous phases, the relative volatility
ratio between the VOS and water should be large (ideally >10); organic molecules with low
molecular polarity and weight are ideal due to their large vapor pressure differences with water
(Figure 3B). Simultaneously, to allow for water uptake, these organic molecules should possess
hydrophilic moieties to interact with water and achieve high water recoveries. For instance, a
sterically unhindered lone pair on a highly electronegative atom (N or O) can hydrogen bond
with water to improve solvation. Solvents having a limited water miscibility generally form asym-
metric hydrogen bonds with water. For example, aprotic solvents lack hydrogen atoms that
can hydrogen bond with the oxygen in water. The combination of these factors inherently favors
short-chain amine, ether, and ketone molecules (Figure 3A,B).

Fractional crystallization for ZLD and critical material recovery
A historical overview of SDFC
SDFC (Figure 1B), also termed solvent-driven fractional precipitation, ‘solventing-out’ of electrolytes,
‘drowning-out’ crystallization, or anti-solvent crystallization [72,73], is the process in which
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Figure 3. Key chemical properties of solvents relevant to solvent-driven separations. (A) Composition of the aqueous- and organic-rich phases of liquid–liquid
equilibria (LLE) of binary aqueous-organic solvent mixtures, for temperatures ranging between 273 and 350 K. These organic solvents, including short-chain ethers, alcohols,
ketones, esters, and amines, are chosen due to their directional solubility characteristics [138–142]. (B) Relative volatility as a function of normalized enthalpy of vaporization for
fully or partially water-miscible organic solvents, including alcohols (circles), ketones (diamonds), ethers (squares), amines (up triangles), and acetonitrile (down triangles).
Temperature increases from 300 to 400 K. Relative volatility values are determined using saturation pressures calculated as a function of temperature using the Riedel equation.
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targeted solutes are selectively precipitated from multicomponent solutions upon the addition of an
external organic solvent. For instance, selective precipitation of potassium chloride from mixed salt
solutions upon alcohol [74] and ammonia [75] addition have been previously reported. SDFC was
dominant in the early development of the potassium fertilizer industry [76], where organoamines
were deliberately added to hypersaline brines to selectively precipitate potassium chloride from a
sodium chloride-rich solution [77].

In fractional crystallization, organic solvents have been widely explored to saturate aqueous solu-
tions and influence the solubility limits of dissolved solutes. Beginning in the 1990s, Ng [73,78,79]
and Cisternas [80–82] advanced generalized processes for fractional crystallization that included
organic solvents and other inorganic reagents. Alfassi’s work with SDFC for the separation
of specific salts systematically explored water-miscible organic solvents such as propylamine
and isopropylamine [72,83–85], leading to the development of a solubility model for fractional
crystallization processes [86].

Since then, several water-miscible solvents have been studied, including ethanol [74], dioxane
[87,88], organoamines [21,35,72,77,83–85,88], acetone [89], and polyethylene glycol [90].
Ireland and colleagues used ethylamine to induce precipitation of sodium chloride from hypersa-
line brine, reporting greater NaCl precipitation per unit mass of solvent addition than acetone and
acetonitrile [91]. SDFC has been deployed in the treatment of liquid waste streams and water
softening in both academic [92–94] and industrial [95,96] research. Others have applied fractional
crystallization through hybridization with membranes for pharmaceutical [97], ammonization [98],
and crystallization applications [99]. Condensable gases, namely short-chain ethers and amines,
have recently been demonstrated as organic solvents for fractional crystallization and are being
explored for a variety of applications [23,24].

Governing mechanisms for SDFC
Prior work in SDFC has identified the importance of solvent selection [88,90,95]. An ideal solvent
for fractional crystallization induces an SLE boundary with minimal solvent addition and is subse-
quently removed rapidly from the aqueous solution with a high solvent recovery ratio [23]. How-
ever, the optimal solvent for a given process depends on the interaction between the solvent,
aqueous system, and ions contained therein [88,90,95]. The complexity of solvent–solute inter-
actions is demonstrated in the work by Goodenough and Harry, on the precipitation of
KCl from a NaCl-rich solution via ammonia addition [75]. In the aqueous solution containing
ammonia, molecular ammonia-solute interactions were found to increase the solubility of
NaCl, while simultaneously decreasing the solubility of KCl, thereby initiating selective pre-
cipitation of KCl [100]. Notwithstanding the complexity of these systems, theoretical frame-
works have been developed to interpret and predict fractional crystallization processes.

A prominent theory to interpret fractional crystallization regards the organic solvent as an anti-
solvent [88,90,95], whose role parallels that of the anti-solvent used in phase inversion of a poly-
mer [101]. This theory argues that the mixed solvent solution cannot maintain ionic solutes in a
solvated state due to the altered dielectric properties of the system. As an example, under this
type of theory, adding ethanol to an aqueous nucleic acid solution lowers the solution dielectric
constant, as ethanol has a lower dielectric constant than pure water (24 for ethanol and 80 for
water) [102]. This argument contends that the force of attraction between sodium ions and phos-
phate groups in the nucleic acids is magnified, permitting sodium ions to penetrate water solva-
tion shells; as a result, the charges of the phosphate groups are neutralized by the mobile sodium
ions, inducing the aggregation and precipitation of ion-paired nucleic acid salts from the solution
[103,104]. However, recent studies indicate that the SLE boundary defined by solvent-induced
1084 Trends in Chemistry, December 2022, Vol. 4, No. 12
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fractional crystallization occurs on a molar basis, independent of the solvent’s identity, thus
contesting the proposed dielectric-based theories [23].

Empirical models developed by Alfassi and Ata showed that the mass ratio of a water-miscible
organic solvent in a solvent–water mixture can be correlated with the fraction of salt precipitated
from a saturated brine (SI.2 in the supplemental information online), to determine the fractional
crystallization behavior of a particular solvent in interaction with various electrolytes [105]. The
fraction of solute precipitated was shown to have a natural logarithmic dependence on the
amount of solvent added. Alfassi and Ata described this process as ‘solventing out’ [105], an
inversion of the ‘salting out’ process, whereby addition of electrolytes induces the precipitation
of other solutes, frequently large biomolecules [106,107]. Subsequent experimental study and
empirical modeling by Bader and colleagues explored solution thermodynamics to understand
fractional crystallization in mixed-solvent systems [93]. However, these results suggest that the
fraction of precipitated salt remains unchanged, despite varying initial salt concentrations, and
that these fractions are independent of the individual salt in solution [93,108]. These findings
are inconsistent with studies performed by Alfassi and Ata [105], which utilized the same miscible
organic solvent (isopropyl amine), and are also inconsistent with the expected predictions for a
process defined by a thermodynamic SLE endpoint.

Solvent recovery and regeneration
Thermally driven liquid phase regeneration
A thermo-responsive solvent used in water extraction from brines must be restored to its
original composition before reuse in subsequent dewatering cycles. The water released from this re-
generation step is the desalinated product water. Regeneration of thermally responsive solvents de-
pends on the inherent temperature sensitivity of the organic solvents (i.e., temperature-driven
equilibrium partitioning behavior) and the rate of demixing (i.e., the kinetics of phase separation).
Froman operational standpoint, the quicker the organic solvent–watermixture separates into product
water and regenerated organic solvent, the higher the throughput of the process and, correspond-
ingly, the smaller the reactor size requirement. Using low viscosity solvents has the additional benefit
of reducing pumping energy and associated costs. In laboratory-scale experiments, phase disen-
gagement times ranging from 10 min to 72 h have been reported [21,22,31,34,35]. The optimization
of demixing time is an important design consideration for practical implementation.

The temperature sensitivity of a solvent varies by solvent class. For alcohols, aliphatic acids, and
imidazolium-based ionic liquids, the solvent contacts the brine at an elevated temperature.
Decreasing the solution temperature decreases the solubility of water in the solvent, releasing
desalinated product water [49]. Amine and ether-based polymers display the opposite behavior,
solubilizing water at lower temperatures and releasing water at elevated temperatures.

Recovery of the thermally responsive solvents can be achieved by temperature swinging. As illus-
trated in Figure 4A, the organic phase from the liquid–liquid separator (LLS) is siphoned out and
its temperature raised through a series of heating and thermal energy recovery stages. At its
elevated temperature, the mixture spontaneously separates into two phases in the decanter: a
high purity organic-rich phase and a residual aqueous-rich phase. The regenerated organic
phase is subsequently cooled before injection into the liquid–liquid extractor, while the aqueous
phase is passed into post-treatment processes to derive pure water [21,22,109].

Volatility-based vapor–liquid separation
Volatile solvents used in extraction or fractional crystallization can be regenerated using vapor–
liquid separation processes, ranging from evaporator-condenser systems to organic mechanical
Trends in Chemistry, December 2022, Vol. 4, No. 12 1085
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Figure 4. Process schematic diagrams for solvent regeneration. (A) High salinity water extraction using thermally
responsive solvents. Solvent regeneration is accomplished by leveraging the difference in solubility of water during
temperature swing. Thermal energy input is provided as an external heat source (TH). (B) High salinity water extraction
using volatile organic solvents. Solvent regeneration is accomplished by leveraging differences in organic phase volatility
using pressure swing. Thermal energy input is provided in the reboiler (TH), while the condenser is used for reflux and
liquefaction. For both systems, if required, the aqueous residue can be post-treated with conventional membrane
processes to obtain solvent-free product water. Abbreviation: RO, reverse osmosis.
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vapor compression (OMVC), as illustrated in Figure 4B. Volatility-based separations typically comprise
two steps. First, heat is used to partially vaporize the water-laden organic stream from the LLS in a
boiler or evaporator, yielding a water-rich liquid phase and an organic-rich vapor phase. The liquid
phase exiting the boiler forms the desalinated product water. The boiler temperature and pressure
are selected to ensure that a water-rich, rather than an organic-rich, liquid phase is formed at the
VLE. In the second step, the vapor phase containing the VOS is liquified in a condenser and
recycled into the LLS. Additional processing may be required to remove residual solvent (see the
‘Membrane-based water-solvent separation’ section). Strategic VOS selection can minimize the
energy required for solvent regeneration, while also tailoring the operation temperature.

Low molecular weight ethers and amines are particularly well-suited to volatility-based solvent
regeneration, combining a high relative volatility with a lower enthalpy of vaporization than
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water. Higher relative volatility allows for fewer separation stages and lower residual solvent loss in
the solvent regeneration system. Furthermore, choosing a VOSwith a lower enthalpy of vaporiza-
tion may reduce the energy consumption that results from imperfect heat recovery between the
evaporation and condensation steps of a solvent regeneration process. Relative volatility values
can be determined using saturation pressures calculated as a function of temperature using the
Riedel equation with parameters from the literature (Figure 3B, see SI.1 in the supplemental informa-
tion online). The most promising VOS candidates are organic compounds that form asymmetric hy-
drogen bonds with water, including dimethyl ether (DME) and trimethyl amine (TMA), which are an
order of magnitude more volatile than water at 300 K.

Membrane-based water–solvent separation
Although thermally driven solvent regeneration systems (Figure 4A,B) can reduce the organic content
in the water substantially, full removal (to ppm concentrations or lower) will likely require further post-
treatments. Membrane processes generally achieve lower rejection of neutral solutes when compared
with equivalent molecular mass electrolytes. Throughmulti-staging, membrane processes can poten-
tially be employed as a final treatment process, to recover and recycle ~99% of the dissolved organic
solvent in the product water. This method produces high-purity water while regenerating nearly all the
organic solvent for further use. Selective membranes separations, both pressure- and temperature-
driven, have been successfully deployed in the removal of dissolved high-molecular weight organics
from aqueous streams. By tuning the membrane pore size distribution and porosities, FO,
nanofiltration and ultrafiltration have been used to remove trace amounts of dissolved organic solvents,
using a variety of counter-solvents as draw and osmotic agents [22,33]. Variants of conventional MD
have recently been investigated for the recovery of low molecular weight organics, such as ammonia
[110–112]. Pervaporation is also an effective means to remove trace organics from an aqueous solu-
tion [113–115]. Solvent-driven crystallizers that incorporatemembrane-based filtration for high-efficacy
solvent regeneration are under development for applications in water adsorption and recovery.

Process design considerations
Energy requirements
Solvent regeneration accounts for the bulk of energy consumption in SDWE and SDFC systems.
Despite its thermal energy dependence, regeneration of thermo-responsive solvents can require
less energy than evaporative thermal distillation [35,116]. Temperature-swing solvent regeneration
avoids direct water vaporization, bypassing the large latent heat of vaporization needed for
conventional water–salt separation [116]. Instead, thermal energy is expended to induce liquid
phase temperature changes of the organic-rich phase (requiring only sensible heat and a small latent
heat), yielding product water at a new LLE point. For instance, the Puraq process consumes up to
97.4 kWht/m

3 for a water recovery of 50%, using heat sources at 51°C [30]. Further, the direction
of the temperature swing impacts energy and regeneration efficiencies; thermo-responsive solvents
require less heat when operated at lower temperatures (close to ambient), as the saline feed and
organic-rich phase need not be preheated. Assuming a 90% heat recovery, the specific thermal en-
ergy consumption (SEC) required to achieve 50% water recovery from a 1.5 M NaCl solution with
DIPA is estimated to be between 39 and 77 kWht/m

3, using a heat source at 68°C [35]. The
SEC for decanoic and octanoic acid systems is reported to be similar, at 170 and 80 kWht/m

3

when using a heat source at 80°C [38]. With imidazolium-based ionic liquids like [1-ethyl-3-
methylimidazolium] [bis(trifluoromethylsulfonyl) imide], the exergetic demand of water extraction is
estimated to be 2.4 kWht/m

3 at 45°C and 5.9 kWht/m
3 at 75°C, when calculated using ideal Carnot

efficiencies [34].

Correspondingly, VOS extraction systems leverage vapor–liquid phase transition to recover pure
VOS vapor from a water-rich mixture. The energy expended for VOS regeneration is minimized
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by selecting solvents with high relative volatilities (Figure 3B). To optimize thermal efficiency, inte-
grated heat recovery systems, such as OMVC cycles, can be leveraged to transfer heat directly
from condensing VOS vapors to the evaporating water–VOS liquid mixtures [52]. Also, heat
pumps are used to transfer heat from VOS condensers to boilers. As a result, high purity water
(>99% by moles) can be extracted from hypersaline NaCl solutions; an integrated DME-based
OMVC cycle demonstrated 50% net water recovery from a 2.5 M NaCl feed solution, with a
corresponding electricity consumption ranging from 30 to 65 kWhe/m

3 [116].

For an incoming brine feed, the exact extraction and solvent regeneration temperatures are
critical in determining both desalination performance and energy requirements. Solvent-driven
processes utilize thermal energy at moderate temperatures between 25oC and 80oC. Thus,
sustainable heat sources, including low-grade industrial heat, shallow-well or low-grade geothermal
heat, and solar energy (e.g., non-tracking collectors [143] and photo-thermal converters [22]), are
favorable for deployment [35]. The associated heating and insulation costs are also reduced when
operating temperatures are near ambient conditions. Ultimately, fine-tuning of these operating
conditions may optimize the balance between water selectivity and energy costs.

Solvent depletion
Solvent loss through entrainment into the aqueous-rich brine discharge [117] and crystallized
solids [118], for SDWE and SDFC, may incur significant material and economic losses. To enable
continuous operation, solvent replenishment following loss and/or degradation is unavoidable.
Considering a hypothetical solvent in an SDWE system with a 10 wt% water carrying capacity,
and material cost of US$1 per kg, the estimated cost of solvent loss would be $1/m3 of purified
water, with an idealized recovery ratio of 99.99%. The cost rises quickly to $100/m3 of purified
water when recovery ratio falls to 99.00%, underscoring the importance of solvent recovery in
ensuring economic viability.

When exposed to prolonged elevated temperatures, solvent depletion through chemical
degeneration represents another major source of solvent loss [119]; amines oxidize through
dealkylation, demethylation, and carboxylic acid formation, producing volatile compounds such
as ammonia and short-chain amines. Glycols oxidize into carboxylic acids [120], while ethers
decompose into alkanes, hydrogen, and carbon monoxide [119]. Ketones undergo decomposi-
tion to form ketenes, which subsequently form methane, ethylene, and carbon dioxide [121].

Adverse catalytic degradations have been reported at unfavorable solution pH. For instance,
ketones undergo acid- and base-catalyzed degradation to form enols and enolates [122] [123]
and ethers hydrolyze in acid to form alcohols and alkyl halides. Amines are oxidized by dissolved
oxygen [124], as are ethers, forming peroxides through a slow oxidation process [125]. Catalytic
surfaces andmetal ion centers also contribute to solvent degeneration [126]. Thesemay originate
from corrosion within the system and surfaces in contact with the solvent, contaminants, or com-
binations thereof. For many feed waters, these materials will not be an issue; however, for some
industrial wastewater treatments, mineral isolation processes, andmaterial production pathways,
the presence of deleterious catalytic materials will be an important concern.

Kinetic considerations
The mixing of two immiscible liquids in SDWE results in liquid phase emulsification, dispersing
water droplets (dispersed phase) in the organic solvent (continuous phase) [127–129]. In the
chemical separation industry, emulsion formation is ubiquitous and is carefully managed to
avoid operational challenges arising from unexpected rheological behavior and slow transport ki-
netics. The thermodynamic stability of emulsions is characterized by droplet size distribution;
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mixtures with high interfacial energies form unstable emulsions, with average droplet sizes greater
than 0.1 μm [130]. In unstable emulsions, the interfacial area is reduced and the two liquids
coalesce and separate into distinct phases over time. Here, we underscore the importance of
controlling emulsification in optimizing SDWE by considering: (i) the kinetics of water uptake
by the organic solvent during extraction, and (ii) the rate of phase stabilization during solvent
recovery.

During the extraction phase in SDWE, the organic solvent contacts an incoming aqueous brine
at a favorable temperature, forming water-in-organic emulsions (Figure 5). Water transport
occurs between the two phases driven by the gradient of its free energy [131]. Smaller droplets
accelerate water uptake by improving the interfacial-area-to-volume ratio [132]. In SDWE, oppor-
tunely, the inorganic salts stabilize the aqueous phase and ameliorate the interfacial tension,
leading to reduced emulsion droplet sizes. At higher salinities, however, droplet elasticity and
deformation results from the weakened interfacial tension, attenuating water transport kinetics
due to fluid instability and coalescence [133,134].

Liquid phase stabilization/separation following water extraction is needed to regenerate the organic
solvent for recycling. The mixture’s sedimentation velocity quantifies the kinetics of phase stabiliza-
tion and is dependent on buoyancy and frictional effects, as described analytically by Stokes’s law
(see SI.3 in the supplemental information online) [135]. To accelerate solvent regeneration, low
viscosity organic solvents are used preferentially at higher temperatures to enhance droplet
collision frequencies. Alternatively, effective demulsification throughmechanical, electrical, thermal,
and chemical agitation is also widely employed in the chemical separation industry [127].

Economics and safety
Practical factors influencing solvent selection are delineated in Table SI.1 (see the supplemental
information online, also SI.4). To enable safe and cost-effective dewatering of hypersaline brine,
the ideal solvent must be biologically and ecologically inert, while minimizing material and equip-
ment costs [136]. Further, the carbon footprint from solvent manufacturing should not offset
potential carbon savings from SDWE and SDFC. Organic solvents that are by-products from
existing chemical manufacturing are ideal for valorization, reducing net chemical wastage and
cost of solvent consumption. While VOS (e.g., ethers and alcohols) are widely produced at low
carbon and production costs, they require additional safety measures in practice due to their
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Figure 5. Kinetic limitations on water uptake due to interfacial transport dynamics. Schematic diagram illustrating
the emulsification in water recovery and solvent regeneration for solvent-driven water extraction. Smaller emulsion drople
sizes lead to faster water uptake, but results in slower settling speed during solvent regeneration. The ideal organic solven
should form low interfacial tension with water and have low dynamic viscosity and large density differences with water [134]
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Outstanding questions
Solvent-driven aqueous separation
processes enable bulk recovery of crit-
ical metals and minerals, and can
achieve zero liquid discharge desalina-
tion, from hypersaline brine. How can
we leverage our prior understanding
of the water–solvent–salt systems to
select novel solvent candidates for the
targeted separation of specific ions?

Intermolecular interactions between
the inorganic ions, organic solvent,
and water, dictate the selectivity and
water recovery potentials of liquid
phase solvent-driven processes. A
comprehensive data set of the
multinary phase equilibria of such sys-
tems is lacking. What other solvent
and salt systems should be investi-
gated to reduce existing knowledge
gaps?

What is the fundamental mechanism of
fractional crystallization between the
organic solvent and a mixture of
inorganic ions? How do inorganic ions
promote solvent phase separation
(liquid–liquid equilibria) between two
miscible organic solvents and water?

Efficient solvent recovery systems
reduce treatment costs and enable
continuous closed-loop operations.
How does the choice of solvent affect
the quality and quantity of energy con-
sumed for recovery? How can such
systems be designed and scaled to
ensure economic and operational
viability of solvent-driven aqueous
separation?

A solvent must be biologically and
environmentally inert to enable its safe
discharge. What toxicity metrics
should be developed to guide the
selection of next-generation solvent
candidates that are safer and more en-
vironmentally benign? What are the
possible changes in a solvent’s degra-
dation pathway under the conditions
typical of practical implementations?
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relative high flammability. Correspondingly, while thermo-responsive solvents (e.g., amines and
carboxylic acids) are biologically and physically stable in operation, they suffer from higher
production costs and environmental carbon footprint. Detailed analysis of the competing
requirements based on the specific application is vital to minimize net process costs of
SDWE and SDFC.

Further, we stress that the regulatory frameworks for solvent usage and discharge remain under-
developed in many applications. The toxicity standards developed for the same solvents in the
chemical industry, for instance, may be inadequate to guide the production of potable water and
inform disposal limitations. The chemical reaction pathways should be elucidated on potential
solvent classes under the harsh conditions encountered in practical usage to rule out formation
of harmful or carcinogenic by-products. The long-term environmental effects should be
ascertained from life cycle analysis, to identify next-generation solvent candidates that are safer
and more environmentally benign.

Concluding remarks
SDWE and fractional crystallization (SDWE and SDFC) represent a promising class of separation
processes to recover critical minerals and achieve ZLD desalination from hypersaline brine. Here,
we identify three open areas of research critical in enabling commercial realization of SDWE and
SDFC (see Outstanding questions).

First, the thermodynamics of directional solubility and the fundamental phenomena governing the
process require further investigation; in particular, potential adverse effects, arising from transport
coupling in multicomponent brines [137] (including organic molecules and inorganic ions other
than Na+ and Cl−), on water selectivity remain unquantified. Data on the effect of temperature
on the multinary phase equilibria is limited, and mechanistic understanding of the molecular inter-
actions in water–solvent–salt systems is incomplete. Advancing the science and engineering of
these areas will enable the informed identification of novel solvent candidates for the selective re-
covery of water from multicomponent brine systems.

Second, thermodynamic and first principles-based research are also required to establish the
mechanism of fractional crystallization (as described in the ‘Fractional crystallization for ZLD
and critical material recovery’ section) between a single salt and solvent, as well as for complex
systems with multiple salts. When an organic solvent and aqueous brine are combined, two
separations are possible: the solvents can induce fractional crystallization of salts (SLE), or the
salts can also induce solvent phase separation (LLE) [24]. For example, a solvent may precipitate
a large fraction of a sparingly salt like CaSO4 from a solution consisting of only water and CaSO4;
however, in the presence of a high solubility salt like NaCl, the solvent may phase separate with
limited precipitation of gypsum. Knowledge of these variations, and the limitations they impose,
is essential for many separation processes.

Finally, process design and corresponding energy consumption calculations for SDWE and SDFC
processes are necessary. These process assessments need to account for heat recovery (or the
lack thereof) and necessary post-processing steps for residual solvent removal and recovery.
Solvent recycling is especially important, given solvent waste has historically been a shortcoming
of solvent-driven aqueous treatments.
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