857 research outputs found

    Automatic Extraction of Protein Point Mutations Using a Graph Bigram Association

    Get PDF
    Protein point mutations are an essential component of the evolutionary and experimental analysis of protein structure and function. While many manually curated databases attempt to index point mutations, most experimentally generated point mutations and the biological impacts of the changes are described in the peer-reviewed published literature. We describe an application, Mutation GraB (Graph Bigram), that identifies, extracts, and verifies point mutations from biomedical literature. The principal problem of point mutation extraction is to link the point mutation with its associated protein and organism of origin. Our algorithm uses a graph-based bigram traversal to identify these relevant associations and exploits the Swiss-Prot protein database to verify this information. The graph bigram method is different from other models for point mutation extraction in that it incorporates frequency and positional data of all terms in an article to drive the point mutation–protein association. Our method was tested on 589 articles describing point mutations from the G protein–coupled receptor (GPCR), tyrosine kinase, and ion channel protein families. We evaluated our graph bigram metric against a word-proximity metric for term association on datasets of full-text literature in these three different protein families. Our testing shows that the graph bigram metric achieves a higher F-measure for the GPCRs (0.79 versus 0.76), protein tyrosine kinases (0.72 versus 0.69), and ion channel transporters (0.76 versus 0.74). Importantly, in situations where more than one protein can be assigned to a point mutation and disambiguation is required, the graph bigram metric achieves a precision of 0.84 compared with the word distance metric precision of 0.73. We believe the graph bigram search metric to be a significant improvement over previous search metrics for point mutation extraction and to be applicable to text-mining application requiring the association of words

    Editorial: Safeguarding youth from agricultural injury and illness: international experiences

    Get PDF
    [Extract] Worldwide, agriculture is among the most dangerous industries and one of the few that involves children (<18 years-of-age) in the worksite as laborers or bystanders. Children are exposed to an array of agriculture-related hazards whether working or merely being present in the farm environment. From a public health and child advocacy perspective, safeguarding these young people from preventable disease and injury is important for many reasons. The negative impacts of a childhood agricultural disease or injury range from permanent disabilities, death, family disruptions, and economic hardships including the potential loss of a sustainable family farm enterprise. At the same time, growing up in an agricultural setting can lead to independent, hardworking, successful adults, who gain a range of benefits, including skill development, family time together, improved immune response, and other protective health factors

    Dopamine D1-like receptor signalling in the hippocampus and amygdala modulates the acquisition of contextual fear conditioning

    Get PDF
    RATIONALE: Dopamine D1-like receptor signalling is involved in contextual fear conditioning, but the brain regions involved and its role in other contextual fear memory processes remain unclear. OBJECTIVES: The objective of this study was to investigate (1) the effects of SCH 23390, a dopamine D1/D5 receptor antagonist, on contextual fear memory encoding, retrieval and reconsolidation, and (2) if the effects of SCH 23390 on conditioning involve the dorsal hippocampus (DH) and/or basolateral amygdala (BLA). METHODS: Rats were used to examine the effects of systemically administering SCH 23390 on the acquisition, consolidation, retrieval and reconsolidation of contextual fear memory, and on locomotor activity and shock sensitivity. We also determined the effects of MK-801, an NMDA receptor antagonist, on contextual fear memory reconsolidation. The effects of infusing SCH 23390 locally into DH or BLA on contextual fear conditioning and locomotor activity were also examined. RESULTS: Systemic administration of SCH 23390 impaired contextual fear conditioning but had no effects on fear memory consolidation, retrieval or reconsolidation. MK-801 was found to impair reconsolidation, suggesting that the behavioural parameters used allowed for the pharmacological disruption of memory reconsolidation. The effects of SCH 23390 on conditioning were unlikely the result of any lasting drug effects on locomotor activity at memory test or any acute drug effects on shock sensitivity during conditioning. SCH 23390 infused into either DH or BLA impaired contextual fear conditioning and decreased locomotor activity. CONCLUSIONS: These findings suggest that dopamine D1-like receptor signalling in DH and BLA contributes to the acquisition of contextual fear memory

    Multiple Imputation of Missing Race and Ethnicity in CDC COVID-19 Case-Level Surveillance Data

    Get PDF
    The COVID-19 pandemic has resulted in a disproportionate burden on racial and ethnic minority groups, but incompleteness in surveillance data limits understanding of disparities. CDC’s case-based surveillance system contains most COVID-19 cases in the United States. Data analyzed in this paper contain COVID-19 cases with case-level information through September 25, 2020, which represent 70.9% of all COVID-19 cases reported to CDC during the period. Case-level surveillance data are used to investigate COVID-19 disparities by race/ethnicity, sex, and age. However, demographic information on race and ethnicity is missing for a substantial percentage of COVID-19 cases (e.g., 35.8% and 47.2% of cases analyzed were missing race and ethnicity information, respectively). Our goal in this study was to impute missing race and ethnicity to derive more accurate incidence and incidence rate ratio (IRR) estimates for different racial and ethnic groups, and evaluate the results from imputation compared to complete case analysis, which involves removing cases with missing race/ethnicity information from the analysis. Two multiple imputation (MI) models were developed. Model 1 imputes race using six binary race variables, and Model 2 imputes race as a composite multinomial variable. Our evaluation found that compared with complete case analysis, MI reduced biases and improved coverage on incidence and IRR estimates for all race/ethnicity groups, except for the Non-Hispanic Multiple/other group. Our research highlights the importance of supplementing complete case analysis with additional methods of analysis to better describe racial and ethnic disparities. When race and ethnicity data are missing, multiple imputation may provide more accurate incidence and IRR estimates to monitor these disparities in tandem with efforts to improve the collection of race and ethnicity information for pandemic surveillance

    Immunofluorescence Assay for Serologic Diagnosis of SARS

    Get PDF
    We evaluated a virus-infected cell-based indirect immunofluorescence assay for detecting anti–severe acute respiratory syndrome-associated coronavirus (SARS-CoV) immunoglobulin (Ig) G antibody. All confirmed SARS cases demonstrated seroconversion or fourfold rise in IgG antibody titer; no control was positive. Sensitivity and specificity of this assay were both 100%. Immunofluorescence assay can ascertain the status of SARS-CoV infection

    Cost-Effectiveness Analysis of Four Simulated Colorectal Cancer Screening Interventions, North Carolina

    Get PDF
    Colorectal cancer (CRC) screening rates are suboptimal, particularly among the uninsured and the under-insured and among rural and African American populations. Little guidance is available for state-level decision makers to use to prioritize investment in evidence-based interventions to improve their population’s health. The objective of this study was to demonstrate use of a simulation model that incorporates synthetic census data and claims-based statistical models to project screening behavior in North Carolina

    Effects of fluid and drinking on pneumonia mortality in older adults: A systematic review and meta-analysis.

    Get PDF
    BACKGROUND AND AIMS: Advice to drink plenty of fluid is common in respiratory infections. We assessed whether low fluid intake (dehydration) altered outcomes in adults with pneumonia. METHODS: We systematically reviewed trials increasing fluid intake and well-adjusted, well-powered observational studies assessing associations between markers of low-intake dehydration (fluid intake, serum osmolality, urea or blood urea nitrogen, urinary output, signs of dehydration) and mortality in adult pneumonia patients (with any type of pneumonia, including community acquired, health-care acquired, aspiration, COVID-19 and mixed types). Medline, Embase, CENTRAL, references of reviews and included studies were searched to 30/10/2020. Studies were assessed for inclusion, risk of bias and data extracted independently in duplicate. We employed random-effects meta-analysis, sensitivity analyses, subgrouping and GRADE assessment. Prospero registration: CRD42020182599. RESULTS: We identified one trial, 20 well-adjusted cohort studies and one case-control study. None suggested that more fluid (hydration) was associated with harm. Ten of 13 well-powered observational studies found statistically significant positive associations in adjusted analyses between dehydration and medium-term mortality. The other three studies found no significant effect. Meta-analysis suggested doubled odds of medium-term mortality in dehydrated (compared to hydrated) pneumonia patients (GRADE moderate-quality evidence, OR 2.3, 95% CI 1.8 to 2.8, 8619 deaths in 128,319 participants). Heterogeneity was explained by a dose effect (greater dehydration increased risk of mortality further), and the effect was consistent across types of pneumonia (including community-acquired, hospital-acquired, aspiration, nursing and health-care associated, and mixed pneumonia), age and setting (community or hospital). The single trial found that educating pneumonia patients to drink ≥1.5 L fluid/d alongside lifestyle advice increased fluid intake and reduced subsequent healthcare use. No studies in COVID-19 pneumonia met the inclusion criteria, but 70% of those hospitalised with COVID-19 have pneumonia. Smaller COVID-19 studies suggested that hydration is as important in COVID-19 pneumonia mortality as in other pneumonias. CONCLUSIONS: We found consistent moderate-quality evidence mainly from observational studies that improving hydration reduces the risk of medium-term mortality in all types of pneumonia. It is remarkable that while many studies included dehydration as a potential confounder, and major pneumonia risk scores include measures of hydration, optimal fluid volume and the effect of supporting hydration have not been assessed in randomised controlled trials of people with pneumonia. Such trials, are needed as potential benefits may be large, rapid and implemented at low cost. Supporting hydration and reversing dehydration has the potential to have rapid positive impacts on pneumonia outcomes, and perhaps also COVID-19 pneumonia outcomes, in older adults

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore