260 research outputs found

    Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory

    Get PDF
    Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and Al3Sc which for low supersaturations of the solid solution have the L12 structure. The aim of the present study is to model at an atomic scale this kinetics of precipitation and to build a mesoscopic model based on classical nucleation theory so as to extend the field of supersaturations and annealing times that can be simulated. We use some ab-initio calculations and experimental data to fit an Ising model describing thermodynamics of the Al-Zr and Al-Sc systems. Kinetic behavior is described by means of an atom-vacancy exchange mechanism. This allows us to simulate with a kinetic Monte Carlo algorithm kinetics of precipitation of Al3Zr and Al3Sc. These kinetics are then used to test the classical nucleation theory. In this purpose, we deduce from our atomic model an isotropic interface free energy which is consistent with the one deduced from experimental kinetics and a nucleation free energy. We test di erent mean-field approximations (Bragg-Williams approximation as well as Cluster Variation Method) for these parameters. The classical nucleation theory is coherent with the kinetic Monte Carlo simulations only when CVM is used: it manages to reproduce the cluster size distribution in the metastable solid solution and its evolution as well as the steady-state nucleation rate. We also find that the capillary approximation used in the classical nucleation theory works surprisingly well when compared to a direct calculation of the free energy of formation for small L12 clusters.Comment: submitted to Physical Review B (2004

    Web-based cognitive behavioural therapy (W-CBT) for diabetes patients with co-morbid depression: Design of a randomised controlled trial

    Get PDF
    Abstract Background Depression is common among people with diabetes, negatively affecting quality of life, treatment adherence and diabetes outcomes. In routine clinical care, diabetes patients have limited access to mental health services and depression therefore often remains untreated. Web-based therapy could potentially be an effective way to improve the reach of psychological care for diabetes patients, at relatively low costs. This study seeks to test the effectiveness of a web-based self-help depression programme for people with diabetes and co-morbid depression. Methods/Design The effectiveness of a web-based self-help course for adults with diabetes with co-morbid depression will be tested in a randomised trial, using a wait-list controlled design. The intervention consists of an 8-week, moderated self-help course that is tailored to the needs of persons living with diabetes and is offered on an individual basis. Participants receive feedback on their homework assignments by e-mail from their coach. We aim to include 286 patients (143/143), as power analyses showed that this number is needed to detect an effect size of 0.35, with measurements at baseline, directly after completing the web-based intervention and at 1, 3, 4 and 6 months follow-up. Patients in the control condition are placed on a waiting list, and follow the course 12 weeks after randomisation. Primary outcomes are depressive symptoms and diabetes-specific emotional distress. Secondary outcomes are satisfaction with the course, perceived health status, self-care behaviours, glycaemic control, and days in bed/absence from work. Questionnaires are administered via the Internet. Discussion The intervention being trialled is expected to help improve mood and reduce diabetes-specific emotional distress in diabetes patients with depression, with subsequent beneficial effects on diabetes self-care and glycaemic outcomes. When proven efficacious, the intervention could be disseminated to reach large groups of patients with diabetes and concurrent depressive symptoms

    Implementing health research through academic and clinical partnerships : a realistic evaluation of the Collaborations for Leadership in Applied Health Research and Care (CLAHRC)

    Get PDF
    Background: The English National Health Service has made a major investment in nine partnerships between higher education institutions and local health services called Collaborations for Leadership in Applied Health Research and Care (CLAHRC). They have been funded to increase capacity and capability to produce and implement research through sustained interactions between academics and health services. CLAHRCs provide a natural ‘test bed’ for exploring questions about research implementation within a partnership model of delivery. This protocol describes an externally funded evaluation that focuses on implementation mechanisms and processes within three CLAHRCs. It seeks to uncover what works, for whom, how, and in what circumstances. Design and methods: This study is a longitudinal three-phase, multi-method realistic evaluation, which deliberately aims to explore the boundaries around knowledge use in context. The evaluation funder wishes to see it conducted for the process of learning, not for judging performance. The study is underpinned by a conceptual framework that combines the Promoting Action on Research Implementation in Health Services and Knowledge to Action frameworks to reflect the complexities of implementation. Three participating CLARHCS will provide indepth comparative case studies of research implementation using multiple data collection methods including interviews, observation, documents, and publicly available data to test and refine hypotheses over four rounds of data collection. We will test the wider applicability of emerging findings with a wider community using an interpretative forum. Discussion: The idea that collaboration between academics and services might lead to more applicable health research that is actually used in practice is theoretically and intuitively appealing; however the evidence for it is limited. Our evaluation is designed to capture the processes and impacts of collaborative approaches for implementing research, and therefore should contribute to the evidence base about an increasingly popular (e.g., Mode two, integrated knowledge transfer, interactive research), but poorly understood approach to knowledge translation. Additionally we hope to develop approaches for evaluating implementation processes and impacts particularly with respect to integrated stakeholder involvement

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Modeling Initiation of Ewing Sarcoma in Human Neural Crest Cells

    Get PDF
    Ewing sarcoma family tumors (ESFT) are aggressive bone and soft tissue tumors that express EWS-ETS fusion genes as driver mutations. Although the histogenesis of ESFT is controversial, mesenchymal (MSC) and/or neural crest (NCSC) stem cells have been implicated as cells of origin. For the current study we evaluated the consequences of EWS-FLI1 expression in human embryonic stem cell-derived NCSC (hNCSC). Ectopic expression of EWS-FLI1 in undifferentiated hNCSC and their neuro-mesenchymal stem cell (hNC-MSC) progeny was readily tolerated and led to altered expression of both well established as well as novel EWS-FLI1 target genes. Importantly, whole genome expression profiling studies revealed that the molecular signature of established ESFT is more similar to hNCSC than any other normal tissue, including MSC, indicating that maintenance or reactivation of the NCSC program is a feature of ESFT pathogenesis. Consistent with this hypothesis, EWS-FLI1 induced hNCSC genes as well as the polycomb proteins BMI-1 and EZH2 in hNC-MSC. In addition, up-regulation of BMI-1 was associated with avoidance of cellular senescence and reversible silencing of p16. Together these studies confirm that, unlike terminally differentiated cells but consistent with bone marrow-derived MSC, NCSC tolerate expression of EWS-FLI1 and ectopic expression of the oncogene initiates transition to an ESFT-like state. In addition, to our knowledge this is the first demonstration that EWS-FLI1-mediated induction of BMI-1 and epigenetic silencing of p16 might be critical early initiating events in ESFT tumorigenesis

    Effects of Glyphosate and its Formulation, Roundup, on Reproduction in Zebrafish (Danio rerio)

    Get PDF
    This is an open access article that is freely available in ORE or from the publisher's web site. Please cite the published version.Copyright © 2014 American Chemical SocietyRoundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress.Natural Environment Research Counci

    Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR

    Get PDF
    Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules

    Seasonal Variation in Vitamin D3 Levels Is Paralleled by Changes in the Peripheral Blood Human T Cell Compartment

    Get PDF
    It is well-recognized that vitamin D3 has immune-modulatory properties and that the variation in ultraviolet (UV) exposure affects vitamin D3 status. Here, we investigated if and to what extent seasonality of vitamin D3 levels are associated with changes in T cell numbers and phenotypes. Every three months during the course of the entire year, human PBMC and whole blood from 15 healthy subjects were sampled and analyzed using flow cytometry. We observed that elevated serum 25(OH)D3 and 1,25(OH)2D3 levels in summer were associated with a higher number of peripheral CD4+ and CD8+ T cells. In addition, an increase in naïve CD4+CD45RA+ T cells with a reciprocal drop in memory CD4+CD45RO+ T cells was observed. The increase in CD4+CD45RA+ T cell count was a result of heightened proliferative capacity rather than recent thymic emigration of T cells. The percentage of Treg dropped in summer, but not the absolute Treg numbers. Notably, in the Treg population, the levels of forkhead box protein 3 (Foxp3) expression were increased in summer. Skin, gut and lymphoid tissue homing potential was increased during summer as well, exemplified by increased CCR4, CCR6, CLA, CCR9 and CCR7 levels. Also, in summer, CD4+ and CD8+ T cells revealed a reduced capacity to produce pro-inflammatory cytokines. In conclusion, seasonal variation in vitamin D3 status in vivo throughout the year is associated with changes in the human peripheral T cell compartment and may as such explain some of the seasonal variation in immune status which has been observed previously. Given that the current observations are limited to healthy adult males, larger population-based studies would be useful to validate these findings

    Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway

    Get PDF
    Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1′/C3′/C5′ positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1′/C3′/C5′ positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs
    corecore