17 research outputs found

    Constraining calcium isotope fractionation (δ44/40Ca) in modern and fossil scleractinian coral skeleton

    Get PDF
    The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation (δ44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the δ44/40Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. Our results show that the fractionation of δ44/40Ca ranges from 0.6 to 0.1‰, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and δ44/40Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by δ18O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral's δ44/40Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotopic values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotopic signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean. Highlights ► Corals cultured in aquaria or from natural environment show the same Ca isotopic composition. ► δ44/40Ca of coral skeleton is independent of depositional setting environment. ► Strong influence of vital effects on coral skeleton δ44/40Ca composition and calcification mechanism

    Internal Ribosome Entry Site Structural Motifs Conserved among Mammalian Fibroblast Growth Factor 1 Alternatively Spliced mRNAs

    No full text
    Fibroblast growth factor 1 (FGF-1) is a powerful angiogenic factor whose gene structure contains four promoters, giving rise to a process of alternative splicing resulting in four mRNAs with alternative 5′ untranslated regions (5′ UTRs). Here we have identified, by using double luciferase bicistronic vectors, the presence of internal ribosome entry sites (IRESs) in the human FGF-1 5′ UTRs, particularly in leaders A and C, with distinct activities in mammalian cells. DNA electrotransfer in mouse muscle revealed that the IRES present in the FGF-1 leader A has a high activity in vivo. We have developed a new regulatable TET OFF bicistronic system, which allowed us to rule out the possibility of any cryptic promoter in the FGF-1 leaders. FGF-1 IRESs A and C, which were mapped in fragments of 118 and 103 nucleotides, respectively, are flexible in regard to the position of the initiation codon, making them interesting from a biotechnological point of view. Furthermore, we show that FGF-1 IRESs A of murine and human origins show similar IRES activity profiles. Enzymatic and chemical probing of the FGF-1 IRES A RNA revealed a structural domain conserved among mammals at both the nucleotide sequence and RNA structure levels. The functional role of this structural motif has been demonstrated by point mutagenesis, including compensatory mutations. These data favor an important role of IRESs in the control of FGF-1 expression and provide a new IRES structural motif that could help IRES prediction in 5′ UTR databases

    Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    No full text
    International audienceClinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field

    Adeno-Associated Virus Vector (AAV) microdystrophin gene therapy prolongs survival and restores muscle function in the canine model of Duchenne Muscular Dystrophy (DMD)

    No full text
    Duchenne Muscular Dystrophy (DMD) is a X-linked inherited muscle-wasting disease primarily affecting young boys with a prevalence of 1:5,000. The disease is caused by loss-of-function mutations in the gene encoding for the Dystrophin protein and is characterized by systemic, progressive, irreversible and severe loss of muscle function. Among vector systems that allow efficient in vivo gene transfer, recombinant Adeno-Associated Virus vectors (rAAV) hold great promise and allow very efficient transduction of skeletal and cardiac muscles. However, full-length dystrophin cDNA exceeds the packaging capacity for a single rAAV gene-delivery cassette. Therefore, truncated versions namely micro-dystrophins have been designed and optimized to contain few clinically important regions of the dystrophin protein. We have tested a rAAV2/8 vector encoding a sequence optimised canine micro-dystrophin transgene, driven by a muscle-synthetic Spc512 promoter (rAAV2/8-Spc512-µDys) in a total of 12 Golden Retriever Muscular Dystrophy (GRMD) dogs, the canine model of DMD. Isolated limb perfusion studies using a single administration of vector induced high levels of micro-dystrophin expression in the treated limb (up to 90% dystrophin positive fibres) with significant normalisation of histological, NMR imaging and spectroscopy parameters and muscle strength, without deleterious immune responses. Similarly, single-dose intravascular delivery of the same rAAV2/8-Spc512-µDys, in absence of immunosuppression, led to long-term transduction of distant muscle groups and extended lifespan (up to 2 years). Profound improvement of multiple clinical features was observed, including gait and respiratory parameters and no toxicity or deleterious humoral and/or cell-mediated immune responses were observed. This study demonstrates the safety and long term efficacy of rAAV2/8-Spc5.12-µDys gene therapy in a relevant large-animal models of DMD and paves the way towards human clinical gene therapy using systemic peripheral vein administration of vector, and applicable to all DMD patients regardless of their genotype

    Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy

    No full text
    International audiencePrimary membranous nephropathy (MN) is an autoimmune glomerular disease in which autoantibodies are directed against podocyte proteins. In about 80% of cases the main targeted antigen is the phospholipase A2 receptor 1 (PLA2R1). Anti-PLA2R1 antibodies are mainly immunoglobulin G type 4 (IgG4). However, the antigenic target remains to be defined in 20% of cases. MN can be associated with chronic inflammatory demyelinating polyneuropathy, an autoimmune disease of the peripheral nervous system where a common antigenic target has yet to be identified. To ascertain a possible novel target antigen, we analyzed kidney biopsies from five patients positive for anti-contactin 1 antibodies and presenting with MN combined with chronic inflammatory demyelinating polyneuropathy. Eluted IgG from biopsy sections against contactin 1 and nerve tissue were screened. Western blot revealed contactin 1 expression in normal kidney glomeruli. Confocal microscopic analysis showed the presence and colocalization of contactin 1 and IgG4 on the glomerular basement membrane of these patients. Glomerular contactin 1 was absent in patients with anti-PLA2R1-associated MN or membranous lupus nephritis or a healthy control. The eluted IgG from contactin 1-positive biopsy sections but not the IgG eluted from patients with PLA2R1 MN bound conactin 1 with the main eluted subclass IgG4. Eluted IgG could bind paranodal tissue (myelinated axon) and colocalized with commercial anti-conactin 1 antibody. Thus, contactin 1 is a novel common antigenic target in MN associated with chronic inflammatory demyelinating polyneuropathy. However, the precise pathophysiology remains to be elucidated

    Preclinical Development of an AAV8-hUGT1A1 Vector for the Treatment of Crigler-Najjar Syndrome

    No full text
    Adeno-associated viruses (AAVs) are among the most efficient vectors for liver gene therapy. Results obtained in the first hemophilia clinical trials demonstrated the long-term efficacy of this approach in humans, showing efficient targeting of hepatocytes with both self-complementary (sc) and single-stranded (ss) AAV vectors. However, to support clinical development of AAV-based gene therapies, efficient and scalable production processes are needed. In an effort to translate to the clinic an approach of AAV-mediated liver gene transfer to treat Crigler-Najjar (CN) syndrome, we developed an (ss)AAV8 vector carrying the human UDP-glucuronosyltransferase family 1-member A1 (hUGT1A1) transgene under the control of a liver-specific promoter. We compared our construct with similar (sc)AAV8 vectors expressing hUGT1A1, showing comparable potency in vitro and in vivo. Conversely, (ss)AAV8-hUGT1A1 vectors showed superior yields and product homogeneity compared with their (sc) counterpart. We then focused our efforts in the scale-up of a manufacturing process of the clinical product (ss)AAV8-hUGT1A1 based on the triple transfection of HEK293 cells grown in suspension. Large-scale production of this vector had characteristics identical to those of small-scale vectors produced in adherent cells. Preclinical studies in animal models of the disease and a good laboratory practice (GLP) toxicology-biodistribution study were also conducted using large-scale preparations of vectors. These studies demonstrated long-term safety and efficacy of gene transfer with (ss)AAV8-hUGT1A1 in relevant animal models of the disease, thus supporting the clinical translation of this gene therapy approach for the treatment of CN syndrome. Keywords: AAV vector, Crigler-Najjar syndrome, UGT1A1, liver gene transfer, long-term safet
    corecore