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Abstract 

 

The present study investigates the influence of environmental (temperature, salinity) and 

biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation 

(δ44/40Ca) in scleractinian coral skeleton to better constrain this record. Previous studies 

focused on the δ44/40Ca record in different marine organisms to reconstruct seawater 

composition or temperature, but only few studies investigated corals.  

This study presents measurements performed on modern corals from natural environments 

(from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory 

cultures (Centre scientifique de Monaco). Measurements on Porites sp., Acropora sp., 

Montipora verrucosa and Stylophora pistillata allow constraining inter-generic variability. 

Our results show that the fractionation of δ44/40Ca ranges from 0.6 to 0.1‰, independent of 

the genus or the environmental conditions. No significant relationship between the rate of 

calcification and δ44/40Ca was found. The weak temperature dependence reported in earlier 

studies is most probably not the only parameter that is responsible for the fractionation. 

Indeed, sub-seasonal temperature variations reconstructed by δ18O and Sr/Ca ratio using a 

multi-proxy approach, are not mirrored in the coral’s δ44/40Ca variations. The intergeneric and 

intrageneric variability among the studied samples are weak except for S. pistillata, which 

shows calcium isotopic values increasing with salinity. The variability between samples 

cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species.  

The present study reveals a strong biological control of the skeletal calcium isotope 

composition by the polyp and a weak influence of environmental factors, specifically 

temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ 

to better constrain their influence on the calcium isotopic signal. If vital effects could be 

extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could 

provide reliable information on the calcium composition and budget in ocean. 
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1. Introduction 

 

Calcium is an essential element in many geological and biological processes (see review in 

DePaolo, 2004). Calcium isotopic fractionation (δ44/40Ca) was studied in various marine 

organisms including foraminifera (Gussone et al., 2003, 2009, 2010; Griffith et al., 2008; 

Hippler et al., 2009), coccoliths (Gussone et al., 2007; Langer et al., 2007), rudists 

(Immenhauser et al., 2005), brachiopods (von Allmen et al., 2010), dinoflagellate (Gussone et 

al., 2010) and bivalves (Heinemann et al., 2008). These studies revealed a significant 

relationship between calcium isotopic fractionation and temperature (Nägler et al., 2000; 

Gussone et al., 2003), mineralogy (Gussone et al., 2005) and inter-generic differences 

(Gussone et al., 2006, 2007). These studies on biogenic calcite or aragonite were extended to 

experimental precipitates (e.g. Lemarchand et al., 2004; Tang et al., 2008). Differences in 

calcium isotopic composition between inorganic and biogenic precipitates were reported 

(Gussone et al., 2006). Calcium isotopic fractionation was used to reconstruct seawater 

composition and calcium balance in ocean through time (DelaRocha and DePaolo, 2000) but 

some uncertainties remain. Some studies argue for disequilibrium between outputs and inputs 

(Zhu and McDougall, 1998), whereas other studies suggest a balanced budget (e.g. Schmitt et 

al., 2003; Fantle & DePaolo 2005). Some modeling studies have proposed that variations of 

δ44/40Ca are influenced by secular variations in seawater composition, specifically by shifts 

from aragonitic to calcitic seas, or carbonate precipitation (Farkas et al., 2007a, b). Thus, 

many uncertainties about calcium isotopic fractionation in biogenic carbonates remain.  

Zooxanthellate scleractinian corals are widely used to reconstruct paleoenvironmental 

changes (e.g. Weber and Woodhead, 1970; Swart, 1983; Gagan et al., 2000; Felis and 

Pätzold, 2003; Corrège, 2006): the oxygen isotopic composition of the skeleton is a proxy for 

sea surface temperature (SST) and seawater isotopic composition (δ18Osw) (e.g. Cole et al., 

1993; Linsley et al., 1994; Quinn et al., 1998; Felis et al., 2009); the carbon isotopic 

composition is used to understand coral physiology (δ13C: e.g. Felis et al., 1998; Heikoop et 

al., 2000; Juillet-Leclerc and Reynaud, 2010); in addition, boron isotopic composition appears 

to be an indicator for pH (e.g. Hönisch et al., 2004; Reynaud et al., 2004; Pelejero et al., 

2005; Taubner et al., 2010). However the calcium isotopic composition of corals, particularly 

with respect to inter-specific variations and influences of environmental parameters is poorly 

constrained (Halicz et al., 1999; Chang et al., 2004; Böhm et al., 2006). 

Furthermore, coral skeletons are prone to diagenetic alteration (McGregor and Gagan, 2003; 

Allison et al., 2007; Hathorne et al., 2011). Thus, along with potential vital effects that could 
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affect the isotopic signals recorded in the skeleton, a careful screening for alteration using 

techniques such as microscopy, powder X-ray diffraction (XRD) and laser ablation ICP-MS is 

required prior to any analysis or data interpretation (Hathorne et al., 2011; Felis et al., 2012). 

The evaluation of vital effects requires a detailed knowledge of polyp biology and 

biomechanics including calcification (Cohen and McConnaughey, 2003; Allemand et al., 

2004; Tambutté et al., 2011), calcium pathway through the organism (Wright and Marshall, 

1991; Allemand et al., 2011), growth rate and other parameters that may influence the 

isotopic fractionation in the skeleton. Processes involved in coral skeleton calcification are 

still under debate and there is no consensus regarding the ion pathway from seawater to 

calcification area (Tambutté et al., 1996; Gaetani et al., 2011; Tambutté et al., 2011). The 

understanding and quantification of biomineralization require discriminating the influence of 

environmental factors. 

The present study focuses on the biological and environmental parameters that are 

fundamental in interpreting calcium isotopic signals in coral skeletons, specifically (1) linear 

extension rate and inter- and intra-generic variations; and (2) sea surface temperature (SST) 

and sea surface salinity (SSS). The interpretation is based on a systematic investigation of 

these parameters using coral sample sets from various locations, different ages and genera.  

 

 

2. Material and methods 

 

2.1. Fossil corals from Tahiti  

 

The fossil coral material was recovered by the Integrated Ocean Drilling Program (IODP) 

Expedition 310 off Tahiti, French Polynesia, in the central tropical South Pacific Ocean 

(Fig.1) (Camoin et al., 2007). The modern sea surface temperature mean is 27.5 ± 0.2°C and 

varies between 26.2°C (August) and 28.8°C (March). The modern sea surface salinity mean is 

around 36. [1982 - 1995. Salinity and temperature data derived from Integrated Global Ocean 

Services System (IGOSS) Products bulletin; 

http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/; Asami et al., 2009]. The massive Porites 

sp. coral investigated in the present study (310-M0018A-19R-1W 29-45) was recovered from 

115 m below present sea level (33 m below sea floor) at the outer shelf of Maraa located on 

the south side of the island of Tahiti (Hole M0018A; 17°46.0124’S, 149°32.8433’W, Fig.1). 

X-radiography of the slabbed coral revealed skeletal density banding with no evidence for 
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diagenetic cements (Fig. 2). Furthermore, XRD analyses confirmed that the coral skeleton in 

all samples is pristine (See Felis et al., 2012; Deschamps et al., 2012). Using a 0.8 mm 

diameter drill bit, samples were obtained from the coral slab by continuous spot-sampling 

along the major growth axis, following a single fan of corallites. 

  

2.2. Modern corals from the Maldives 

 

Modern corals from natural environment were collected on 2010 in Maghoodoo Island, the 

Maldives (Faafu, Nilandhoo atoll, 3°04’49°76”N; 72°57’55°98”E; Fig. 1), northern Indian 

Ocean. The modern sea surface temperature varies between 28 and 31°C (2005 - 2011 data: 

area average time series 72°E-73°E, 3°N-3°N (MTMO_SST_9km.CR, Modis Terra, 

http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html). Monthly SST was lowest in 

December-January and highest in April-May (Edwards et al., 2001; Ministry of Environment, 

Energy and Water, 2007). The modern sea surface salinity mean is 35 ± 0.4 (data from 1958-

1997, Woodworth, 2005). Coral samples of Porites sp., Acropora sp., and an unidentified 

massive coral species were collected at the same date and location along a transect from the 

lagoon to the open ocean (Fig. 1). Corals were ultrasonicated and rinsed several times, cut in 

slabs parallel to the growth axis and sampled on the tips using a drill tool and agate mortar. 

Thin-sections from slab counterparts were checked qualitatively for diagenesis. Microscopic 

analysis revealed a well-preserved aragonitic skeleton, without diagenetic cements, that was 

confirmed by the X-radiograph image. Powder XRD analysis performed at the Department of 

Geosciences, University of Fribourg (Switzerland), indicates that the coral skeleton is 100 % 

aragonite (authors’ unpublished data). 

 

2.3. Cultured corals from Monaco  

 

Colonies of Acropora sp., Stylophora pistillata and Montipora verrucosa were cultured in the 

laboratory under controlled environmental conditions at different salinities obtained 

artificially: 36.2 (“36” in the following), 38 and 40 (Table 3). Coral tips were sampled from 

the same parent colony, glued on glass slides with Epoxy glue (Devcon® UW) and randomly 

distributed in aquaria with salinities of 38 during ten weeks (Reynaud-Vaganay et al., 1999). 

The corals were fed three times a week with Artemia salina nauplii. The aquaria were 

supplied with Mediterranean seawater pumped from 50 m depth. The seawater renewal rate 
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was approximately five times per day and the seawater was continuously mixed with a Rena® 

pump (6 l.min−1). To obtain artificial seawater at salinity 36 from the Mediterranean seawater 

originally at a salinity of 38, the natural seawater was mixed with distilled water and added 

with a peristaltic pump in an extra tank before reaching the experimental aquarium. Seawater 

at salinity 40 was obtained by mixing the Mediterranean seawater and the artificial water 

prepared with artificial salts to obtain a salinity of 50 (Instant Ocean, Aquarium Systems). 

The stability of the salinity was checked using a conductivity meter (Mettler LF 196) and 

recorded continuously. Some of the tips from aquaria maintained at a salinity of 38 were 

transferred to another aquarium at a salinity of 40 and 36 after ten weeks. All transfers of 

coral tips were gradual (+ 0.5 salinity units per day) to avoid stress.  

δ18Osw was measured 7, 11 and 5 times in the aquaria at a salinity of 36, 38 and 40, 

respectively, to test the effect of dilution or artificial salt addition in seawater. Evaporation, 

which is the main natural process involved in salinity increase, induces a faster removal of 

lighter isotopes and thus increases δ18Osw. Indeed, the addition of artificial salts, which is the 

method to increase salinity in the present study, could induce a bias in the geochemical 

process. Moreover, the addition of freshwater influences the δ18Osw of the aquaria. However, 

in experimental setting, these biases cannot be avoided. Seawater was maintained at 27.1 ± 

0.1°C using a temperature controller (EW, PC 902/T), and recorded each 10 min with 

Seamon® recorders (resolution: 0.025°C, precision: ± 0.1°C). Metal halide lamps (Philips 

HPIT, 400 W) provided irradiance of 204 ± 3 μmol.m−2.s−1 on a 12:12 photoperiod. Seawater 

was continuously aerated with outside air. All parameters were kept constant during the 

experiment: nutrition, irradiance, pH [8.08: measured with a combined Ross® electrode 

(Orion 8102SC) according to the Sea Water Scale], total alkalinity (2.6 mEq.kg-10: measured 

by potentiometric titration) and pCO2 (adjusted in two buffer tanks using a pH controller 

(R305, Consort Inc.) (Reynaud-Vaganay et al., 1999; Reynaud-Vaganay, 2000). 

At the end of the experiment, the skeleton deposited on the glass slide was removed with a 

scalpel (Reynaud–Vaganay et al., 1999), dried overnight at room temperature and stored in 

glass containers. 

  

2.4. Measurement  

 

Calcium isotopic analysis was conducted at GEOMAR (Kiel, Germany), using thermal 

ionization mass spectrometer (TIMS Finnigan Triton TI) and double spike (43Ca-48Ca), 

following the method described in Heuser et al. (2002). Samples of about 300 ng Ca, 
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dissolved in 2 N HCl, were loaded with TaCl5 activator after addition of a 43Ca–48Ca double 

spike on zone-refined Re single filament. Measurements were made in dynamic mode with 
40Ca/43Ca, 42Ca/43Ca, and 44Ca/43Ca measured in the main cycle and 43Ca/48Ca in the second 

cycle. Five samples and six standards (of which four are NIST SRM 915a and two are CaF2) 

were loaded on a turret for 25h duration and each sample was measured three times. Signal 

intensity during acquisition was typically 4–5 V for 40Ca. The isotope values were expressed 

relative to NIST SRM 915a as δ44/40Ca = ((44Ca/40Ca)sample / (44Ca/40Ca)NIST SRM 915a - 1) · 1000 

(Eisenhauer et al., 2004). δ44/40Ca values of each session were calculated with the session 

mean value of the standard NIST SRM 915a. The average precision for NIST SRM 915a 

during a session was ± 0.08 ‰ (2SEM, N = 4). The long-term (2008-2012) mean 44Ca/40Ca of 

NIST SRM 915a was 0.0211842 ± 0.0000078 (2SD, N = 1006).  

δ18O analyses of the fossil Tahiti coral were carried out at the University of Bremen following 

established methods (Felis et al., 2000; 2004; 2009). Sr/Ca analyses were carried out at the 

University of Bremen following the methods described in Felis et al. (2012) and Giry et al. 

(2012). A 0.20-0.32 mg split of the sample powder that was used for δ18O analyses was 

dissolved in 7 mL 2% suprapure HNO3, containing 1 ppm Sc as internal standard. The 

calcium concentration of dissolved samples was 5-15 ppm. Measurements were performed on 

a Perkin-Elmer Optima 3300R simultaneous radial ICP-OES using a CETAC U5000-AT 

ultrasonic nebulizer. Element wavelengths were detected simultaneously in 3 replicates (Ca 

317.933 nm, Ca 422.673 nm, Sr 421.552 nm, Sc 361.383 nm, Mg 280.271 nm). Calcium 

concentrations measured on an atomic line (422.673 nm) were averaged with the 

concentrations from an ionic line (317.933 nm) to compensate for possible sensitivity drift in 

a radial ICP-OES. Calibration standards were diluted from a master standard with a Sr/Ca 

ratio of 9.099 mmol.mol-1. A control standard set had calcium concentrations of 15 ppm and 

varying Sr concentrations yielding Sr/Ca ratios of 8.6-10 mmol.mol-1. Measurements of a 

laboratory coral standard after each sample allowed offline correction for instrumental drift. 

Relative standard deviation of the Sr/Ca determinations was better than 0.2%. 

δ18O of cultured coral skeleton from Monaco was measured by gas source mass spectrometer 

VG-OPTIMA®, using bracketing technique in CEA-CNRS (Laboratoire des Sciences du 

Climat et de l'Environnement, Gif-sur-Yvette, France) as described by Reynaud-Vaganay 

(2000). The measurements were expressed relative to PDB standard and the analytical 

precision was 0.16‰. The oxygen isotopic composition of aquaria seawater samples was 

measured on a Finnigan MAT 252 and the results expressed relative to SMOW standard. The 

reproducibility of the seawater δ18O measurements was 0.05 ‰ (SD). 
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Aliquots of the same samples were used for both analyses of isotopic ratios and elemental 

composition (δ18O, δ44/40Ca, Sr/Ca).  

 

 

3. Results and discussion 

 

δ44/40Ca, standard error of the mean (SEM) and repeats of all sample sets are listed in Table 1 

(fossil coral from Tahiti), Table 2 (modern corals from the Maldives) and Table 3 (cultured 

corals from Monaco). The δ44/40Ca values ranged between 0.6 and 0.1‰ (Fig. 3); the overall 

mean δ44/40Ca was 0.81 ± 0.18 ‰ (2SD), in good agreement with results from previous 

studies (Böhm et al., 2006: 0.81 ± 0.05 ‰). 

According to several studies, the calcium isotopic composition of many biogenic carbonates 

differs from that expected for equilibrium precipitation in the ambient seawater. The result is 

an offset in isotopic values referred to as “vital effect”. Such biologically induced isotope 

offsets may correlate with growth rate or reflect inter-generic variability as documented in 

several studies (e.g. McConnaughey, 1989; Cardinal et al., 2001; Felis et al., 2003; Maier et 

al., 2004). These offsets must be taken into account to extract the environmental signals 

recorded in coral skeletons. We discuss below the biological effects and environmental 

parameters likely to influence the calcium isotopic record in corals. 

 

3.1. Linear extension rate and inter-generic comparison of the geochemical record 

 

The seasonal linear extension rate of the fossil Porites sp. colony from Tahiti along the micro-

sampled transect ranged from 3.4 mm.yr-1 (dry and cool season) to 9 mm.yr-1 (wet and hot 

season) and the average linear extension rate was 5.3 mm.yr-1. The δ18O and Sr/Ca analyses of 

the fossil Porites sp. revealed a continuous record of three years of skeletal growth. The 

seasonal linear extension rate was calculated using the clear seasonal cycles documented in 

δ18O and Sr/Ca (Fig. 4). The range of the linear extension rate was comparable to that 

obtained from previous studies (Lough and Barnes, 2000; Böhm et al., 2006; Asami et al., 

2009). However, the relationship with total skeletal weight and calcification rate, which is 

related to density, was not investigated in the present study.   

The linear extension rate of the fossil Tahiti Porites sp. varied by a factor of 2 to 3 depending 

on the season, but the calcium isotopic composition showed no correlated variation (Fig. 5). 

This result confirms previous assumptions that growth rate may not explain variations in 
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δ44/40Ca aragonite of coral skeletons (Böhm et al., 2006). This is not in agreement with results 

obtained from inorganic calcite precipitation experiments, which showed that the precipitation 

rate strongly influenced the calcium isotopic fractionation, although the trend of the slope 

remained controversial (Lemarchand et al., 2004, Tang et al., 2008). Moreover, in the 

experiments on calcite precipitates, precipitation rate seemed to be controlled by temperature 

(Tang et al., 2008).  

Felis et al. (2003) have shown that the oxygen isotopic composition in skeletons of Porites sp. 

may be influenced by low extension rate (< 0.6 cm.yr-1). In the present study, no such 

threshold was found for δ44/40Ca (Fig. 5).  

For all genera considered, the δ44/40Ca range was wide and nearly identical, between 0.6 and 

0.1 ‰, and no inter-generic difference in calcium isotopic composition among the three 

different genera studied here was observed (Fig. 3), in agreement with previous results (Böhm 

et al., 2006). However, Acropora sp. showed intra-generic differences between different 

localities. The δ44/40Ca values of Acropora sp. from the Maldives (0.95 ± 0.02‰) were 

significantly higher than those of cultured Acropora sp. from Monaco (0.78 ± 0.05‰ in the 

present study; 0.81 ± 0.05‰ in Böhm et al., 2006; ANOVA: p = 0.022, Fig. 3). Such 

differences can be originated from the different species of Acropora. Even though the calcium 

isotope ratio is higher in samples from the Maldives than in the cultured Acropora sp., this 

difference cannot be explained by morphological differences, as the samples did not exhibit 

any specific morphological difference according to macroscopic observations. The 

ultrastructure was not investigated in this study.  

However, at different salinities, S. pistillata is the only species that shows a distinguishable 

geochemical signal (δ44/40Ca) between samples subject to same conditions, as discussed below 

(section 3.2.3, Fig. 9).  

 

3.2. Environmental parameters 

 

3.2.1. Location across the platform: depositional settings 

 

The average δ44/40Ca values of samples for each genus across the platform transect were not 

significantly different (Kruskal-Wallis H test: H(2) = 3.079, p = 0.214; Fig. 6). However, 

inter-genera variability was smaller in the reef crest compared to that in the lagoon or the 

forereef (SD: lagoon = 0.09, reef crest = 0.02 and forereef = 0.11). 
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Physical and chemical factors, e.g. light, water motion and/or suspended sediments, are 

known to vary across a carbonate platform (Rex et al., 1995; Flügel, 2004). Some of these 

variations can be recorded in isotopic systems including O and C (e.g. Reynaud-Vaganay et 

al., 2001). However, in the present study, even though the environmental parameters were not 

monitored quantitatively, the samples were collected in different locations which correspond 

to different depositional settings (lagoon, reef crest and forereef) exhibiting different 

environmental conditions (Chester, 2000). Our results show that, in natural conditions, the 

calcium isotopic composition of the coral skeleton is immune from the environmental 

variations such as light, sedimentation rate or hydrodynamism across the platform. Therefore, 

if other parameters such as temperature or salinity influence the composition of coral 

skeleton, the isotopic record is likely to preserve signals linked to these parameters. 

This finding is important for the fossil record because past environmental depositional 

conditions are difficult to reconstruct with accuracy, possible lateral variations in calcium 

isotopes across platforms can be excluded, allowing for trustful correlation of sections.   

 

3.2.2. δ44/40Ca record and sea surface temperature 

 

Paleo-SST (°C) was reconstructed from skeletal δ18O values (‰) and Sr/Ca ratio (mmol.mol-

1). The equations used were those applied in previous studies, choosing those currently used 

for the coral genera analyses and/or the settings studied. For δ18O proxy, we used the equation 

of Gagan et al. (1998):  

(1) SST = (δ18O - 0.146) / -0.18 

 

for the Sr/Ca ratio, the equation of Corrège et al. (2006):  

(2) SST = (Sr/Ca – 10.553) / (-0.061)  

 

The equation of Böhm et al. (2006) was applied to reconstruct SST using δ44/40Ca record:  

(3) SST = (δ44/40Ca - 0.3) / 0.022  

 

Although the relationship between SST and δ44/40Ca is widely studied for marine organisms 

including foraminifera, brachiopods, bivalves and coccoliths, only few previous studies 

examined this relationship in coral skeleton (Halicz et al., 1999; Chang et al., 2004; Böhm et 

al., 2006). One of these studies reported a weak but significant positive trend (+0.02 ‰/°C, 

Böhm et al., 2006) although the authors did not recommend the methodology unless the 
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precision was significantly improved or the temperature variations to be reconstructed exceed 

5°C. Since our fossil sample set from Tahiti revealed a pristine skeleton, without evidence of 

diagenetic cements, and accurate δ18O and Sr/Ca records, it was interesting to compare these 

well-constrained proxies with the δ44/40Ca record.  

In the present study, the aim was to compare the reliability of different proxies (δ18O, Sr/Ca 

and δ44/40Ca) used to reconstruct SST variability. Thus, we considered only the amplitude and 

not the absolute SST. Indeed, the amplitude of reconstructed SSTδ44/40Ca (15.5°C) was 

significantly higher than that of SSTδ18O (3°C) and SSTSr/Ca (3°C), from the SST anomaly 

(deviation from the mean, Fig. 7). Moreover, SSTδ44/40Ca did not reveal the seasonal cycle 

shown by the other proxies (Fig. 7). 

The SSTδ18O and SSTSr/Ca anomalies (Fig. 7), reconstructed from the fossil Tahiti Porites sp. 

are consistent with values from previous studies of modern and fossil Tahiti corals (Cahyarini 

et al., 2008; Asami et al., 2009; Felis et al., 2012). The seasonal SST cycles reconstructed in 

Tahiti by Asami et al. (2009) have similar amplitudes at 14.2 (3.0 ± 0.3°C) and 12.4 ka 

relative to the present (3.3 ± 0.6°C) as the values recorded today by instrumental 

measurements between 1982 and 1995 (2.8 ± 0.6°C) [Data derived from Integrated Global 

Ocean Services System (IGOSS) Products bulletin – 

http://iridl.ldeo.columbia.edu/SOURCES/.IGOSS/; Asami et al., 2009]. Our results however 

show that SSTδ44/40Ca did not correlate with the amplitude of the SST reconstructed from δ18O 

and Sr/Ca (Fig. 7). Such large SSTδ44/40Ca variations (15.5°C) appear non-realistic, compared 

to the SST variations derived from δ18O (3°C) and Sr/Ca (3°C). Furthermore, Tahiti is located 

in a tropical area characterized by weak (2.8 ± 0.6°C, 1σ) seasonal average amplitude of SST. 

The unrealistic SST variations obtained using δ44/40Ca records (equation 3) confirm that 

temperature is not the main parameter controlling calcium isotopic fractionation in coral 

skeleton.  

 

3.2.3. δ44/40Ca record and sea surface salinity 

 

According to the results from Reynaud-Vaganay (2000), S. pistillata showed lighter δ18O than 

other cultured genera (Acropora sp. and M. verrucosa) for salinities of 36 and 40. For δ13C, S. 

pistillata showed also lighter values than the other genera. At a salinity of 38, which is the 

cultured salinity of the parent colonies, these inter-generic differences were minor for δ13C, 

and nonexistent for δ18O. There was no relationship between salinity and δ44/40Ca in the 

cultured corals from Monaco (Fig. 8, ANOVA: p-value = 0.5). Nevertheless, δ44/40Ca values 
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of S. pistillata samples plotted against salinity reveal a positive trend which was, however, not 

statistically significant (p-value = 0.14) (Fig. 9). Moreover, the observed ranges of δ44/40Ca 

values of the S. pistillata colonies increased in parallel with salinity: the range was from 0.68 

± 0.09 to 0.7 ± 0.07 at 36 of salinity and from 0.62 ± 0.04 to 0.98 ± 0.06 at 40 of salinity (Fig. 

9). The variability was significantly different at a salinity of 36 compared with 38 or 40, as 

shown by the F-test (Table 4). Measurement artifacts can be excluded because each 

measurement was repeated three times and standard errors are smaller at 40, confirming the 

precision of the measurements (Table 3). 

Many studies have used coral δ18O in combination with Sr/Ca to reconstruct δ18Osw and SST 

simultaneously (McCulloch et al., 1994; Gagan et al., 1998; Le Bec et al., 2000; Ren et al., 

2002; Felis et al., 2009). However, in a previous study of modern corals from Tahiti 

(Cahyarini et al., 2008), it was shown that the analytical uncertainties of coral δ18O (±0.07 ‰) 

equal the amplitude of the seasonal cycle of δ18Osw (±0.08 ‰); thereof it was not possible to 

resolve the seasonal SSS in this area. On the other hand, combining coral δ18O and Sr/Ca was 

successfully applied for SSS and SST reconstructions in other tropical locations, e.g. Timor 

(Cahyarini et al., 2008), where the analytical error of δ18Osw (±0.07 ‰) was smaller than the 

mean seasonal cycle of δ18Osw (±0.16 ‰). To avoid potential analytical bias noted in natural 

conditions, in the present study we examined the influence of salinity on calcium isotopes 

using cultured corals grown under monitored conditions. 

In this study, the coral response to salinity changes as been evaluated by measuring 

physiological responses, e.g. net photosynthesis, respiration, amount of chlorophyll a 

(Reynaud-Vaganay, 2000) and geochemical parameters: δ18O, δ13C and δ44/40Ca. The results 

reveal that neither the amount of chlorophyll a, nor respiration and photosynthesis were 

affected by salinity (Reynaud-Vaganay, 2000). This result is in agreement with a previous 

study, which has shown that corals may be more tolerant than expected to salinity changes 

(Muthiga and Szmant, 1987). On the contrary, other studies (Moberg et al., 1997; Porter et 

al., 1999) showed that the amount of chlorophyll increase and the photosynthesis decrease 

when salinity reaches 40. However, these studies were conducted on a short time period. 

During the experimental protocol of the present study, the gradual modification of salinity 

(+0.5 units per day) did not induce stress to the coral and no abnormal metabolic response 

was recorded. In the present study, only the effect of hyper-salinity (salinity: 40) could be 

investigated because the lower salinity level (salinity: 36) was high compared with the values 
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used in previous studies, e.g. 20 (Downs et al., 2009). Furthermore, no gross modifications in 

the polyp induced by hypo-salinity were recorded. 

Nevertheless, the geochemical analyses revealed a noticeable difference in the calcium 

isotopic composition of S. pistillata compared to the other genera (Figs. 8 and 9).  Such 

difference might be due to the fact that S. pistillata belongs to the Pocilloporidae family 

whereas Acropora sp. and M. verrucosa belong to another family (Acroporidae). It is worth 

noting that Ferrier-Pagès et al. (1999) measured a maximal net photosynthesis at 38 of salinity 

whereas the minimum was reached at 40 of salinity for S. Pistillata. In the present study, 

δ44/40Ca record of S. pistillata only showed the least variability at a salinity of 36. The 

reproducibility of the measurements showed that this feature is not related to an analytical 

artifact. Since physiological parameters were not affected by salinity changes (Reynaud-

Vaganay, 2000) and the other conditions were kept constant, this special geochemical 

signature revealed in S. pistillata may be linked to calcium pathway in the polyp, as calcium 

isotopic fractionation during the calcium pathway across the polyp may vary upon species or 

family. Differences in calcium isotopic fractionation between families could reveal different 

biological sensitivities to salinity, but further investigations are needed, using other genera. As 

discussed by Tambutté et al. (2012) the calcium ion flux from the external seawater across the 

coral tissue to the site of calcification is controlled by the coral. The ion flux likely follows 

both a passive paracellular and an active transcellular transport route. The importance of the 

two routes may depend on physiological conditions, e.g. the permeability of the coral tissue. 

Böhm et al. (2006) suggested that calcium isotope fractionation in scleractinian corals occurs 

during the transepithelial transport to the calcification site. If this is the case, calcium isotope 

fractionation may be influenced by the permeability of the coral tissue. However, in the 

present study, the salinity variation appears not significant enough to influence the 

permeability.   

A better knowledge of calcification processes is, thus, necessary to better constrain which 

isotope fractionation processes are affected by salinity variations and how sensitivities to 

salinity changes vary among different scleractinian species. More species could be cultured at 

a wider range of salinity. Moreover, additional experiments with different duration or with 

greater variations in steps of salinity changes can be carried out to evaluate the potential 

influence of stress on coral growth.   
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4. Biological processes and calcification 

 

Different environmental parameters were tested in this study: SSS, SST and depositional 

settings across the platform. None of these revealed any unequivocal relationship with 

δ44/40Ca. Nevertheless, calcium isotopic fractionation was not always constant, as shown by 

the variations in the Porites sp. record from Tahiti (Fig. 4) and the variability in the S. 

pistillata samples grown at different salinities (Fig. 9). Such variations are likely due to 

intrinsic factors influencing the polyp. Although the processes involved in coral calcification 

are still under debate, two models reached a consensus. Based on the compartmental model of 

coral polyp (Tambutté et al., 1996), various studies argued for a confined calcifying space, 

connected periodically with seawater and invoked Rayleigh fractionation to explain the 

chemical composition of coral skeleton (Cohen and Holcomb, 2009; Gaetani et al., 2011). 

Other studies demonstrated, however, that this calicoblastic space is isolated from seawater 

and that calcium ions pass through the polyp tissue (Böhm et al., 2006; Tambutté, 2010, 

Allemand et al., 2011). The “semi-open calicoblastic space” theory agrees upon the elemental 

ratio (Mg/Ca, Ba/Ca and Sr/Ca) composition of coral skeleton (Gaetani et al., 2011), whereas 

the “isolated compartment” theory may explain the isotopic composition. Previous 

experiments to evaluate the influence of pH on calcium isotopic composition in coral skeleton 

indicate that calcium is not influenced by Rayleigh fractionation (Taubner et al., 2010 and 

pers. comm.) and tended to favour the “isolated compartment” theory.  

In the present study, the δ44/40Ca record of S. pistillata was increasingly variable between 

specimens when salinity increases. Such variability argues for a strong influence of the polyp 

on fractionation during the calcification processes because the colonies grew under identical 

external conditions. S. pistillata seems to be more sensitive to salinity than other genera 

analyzed and could adapt to these variations without influence on vital processes (e.g. 

respiration). 

To better constrain the causes of the calcium isotope fractionation in coral skeleton, 

investigations on living corals are needed to locate the site of fractionation and the calcium 

pathway in the polyp and to evaluate these processes. New methods such the labeling 

techniques recently used to locate calcein pathways in corals (Tambutté et al., 2012) 

combined with measurement of isotope ratios can be used for this purpose. 
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5. Conclusion 

 

Coral skeleton composition is widely used for environmental reconstruction and represents a 

privileged chemical proxy for temperature. However, unlike other biogenic component such 

as foraminifera, δ44/40Ca signature in coral skeleton was not investigated systematically. By 

the diversity of parameters and species investigated, this study contributes to improve 

significantly current knowledge. The main result shows that δ44/40Ca of coral skeleton is 

immune from any environmental influence whichever the species and the location. However, 

the variability between colonies cultured under identical conditions increases with salinity for 

S. pistillata. This behavior attests for the importance of biological influences on isotopic 

fractionation during the calcification process. Once calcium isotopic fractionation behavior on 

coral is constrained using in situ measurements, the signal can be trustfully used to reconstruct 

seawater composition and the calcium budget in the ancient ocean. Therefore, additional 

studies are crucial to better evaluate the contribution of biological processes in calcium 

isotopic composition of coral skeleton. If the biological influence can be quantified and 

proves to be a constant factor, the latter can be discriminated and the calcium isotope 

fractionation can be applied for reconstructions.   
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Figure captions: 

 

Fig. 1: Geographic location of the samples studied (A.): The Maldives (B.1), Maghoodoo 

Island (B.2), along with the sampled transect (C.) and Tahiti (D.1) along with the location of 

IODP Hole M0018A (D.2, E) that coral samples originated from. 

  

Fig. 2: Fossil Porites sp. from Tahiti (310-M0018A-19R-1W 29-45), X-radiograph positive 

image and location of the samples on the slab [black dots, from number 1 (bottom) to 25 

(top)]. 

  

Fig. 3: δ44/40Ca (± 2SEM) data from different genera and different data sets. Stars: fossil 

corals from Tahiti (this study), filled circles: modern corals from the Maldives (this study), 

open circles and triangles: corals cultured in monitored conditions in Monaco (respectively: 

this study and Böhm et al., 2006), cross: modern corals from the Red Sea (Böhm et al., 2006), 

diamonds: modern corals from Galapagos (Böhm et al., 2006; N=1).    

  

Fig. 4: δ18O (open circles), δ44/40Ca (± 2SEM) (stars) and Sr/Ca (filled circles) records of 

fossil Porites sp. plotted as the samples according to their position in the coral slab (cf. Fig. 

2). 

  

Fig. 5: δ44/40Ca (± 2SEM) of the fossil coral Porites sp. from Tahiti plotted against the 

seasonal linear extension rate. 

  

Fig. 6: δ44/40Ca (± 2SEM) of the modern corals from the Maldives plotted against the location 

of the samples across the platform.  

  

Fig. 7: Reconstructed Tahiti coral SST anomaly (deviation from the mean) reconstructed 

using δ18O, δ44/40Ca and Sr/Ca. Open circles represent the SST anomaly reconstructed using 

the equation from Gagan et al. (1998); filled squares, using the equation from Corrège et al. 

(2006) and stars, using equation from Böhm et al. (2006).  

  

Fig. 8: δ44/40Ca (± 2SEM) of the cultured corals from Monaco: Acropora sp. (squares), S. 

pistillata (circles), M. verrucosa (diamonds) plotted against salinity 36, 38, 40. 
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Fig. 9: δ44/40Ca (± 2SEM) of S. pistillata cultured in Monaco plotted against salinity 36, 38, 

40 (stars symbols). Circles represent the mean of the sample for each salinity.  

 

Table caption : 

Table 1 : Calcium isotope values of fossil Porites sp. from Tahiti 

Table 2: Location on transect and calcium isotope values of modern corals from the Maldives 

Table 3: Salinity and calcium isotope values of cultured corals from Monaco 

Table 4: Results of the F-test that reveal the variability between δ44/40Ca of the samples when 

salinity increases for S. pistillata 
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Sample name Sample number δ44/40Ca (‰) 2SEM (‰) N 
224 1 0.88 0.11 3 
225 2 0.70 0.11 3 
226 3 0.90 0.08 3 
227 4 0.81 0.07 3 
228 5 0.89 0.11 3 
229 6 0.93 0.05 3 
230 7 0.88 0.11 3 
231 8 0.78 0.09 3 
232 9 0.90 0.12 3 
233 10 0.88 0.15 5 
234 11 0.71 0.10 3 
235 12 0.81 0.08 5 
236 13 0.65 0.09 3 
237 14 0.77 0.12 5 
238 15 0.79 0.06 3 
239 16 0.82 0.09 3 
240 17 0.86 0.03 3 
241 18 0.86 0.07 3 
242 19 0.72 0.04 5 
243 20 0.84 0.07 3 
244 21 0.83 0.15 5 
245 22 0.82 0.11 3 
246 23 0.85 0.09 3 
247 24 0.99 0.03 5 
248 25 0.88 0.06 4 

 

 

Table 1 
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Sample Genus Location on the 
transect 

Distance from 
the beach (m) Water depth (m) δ44/40Ca (‰) 2SEM (‰) N 

MAL-Por1-2 Porites sp. Lagoon 35 1 0.79 0.12 5 
MAL-Por1-3 Porites sp. Lagoon 35 1 0.76 0.06 6 
MAL-Por2-1 Porites sp. Reef flat 90 0.7 0.85 0.07 6 
MAL-Por2-2 Porites sp. Reef flat 90 0.7 0.86 0.07 6 
MAL-Acr1-1 Acropora sp. Lagoon 40 0.9 0.98 0.05 3 
MAL-Acr2-1 Acropora sp. Reef flat 100 1 0.91 0.06 3 
MAL-Acr3-1 Acropora sp. Forereef 150 3 0.96 0.03 4 
MAL-XX1-1 Massive unidentify Lagoon 50 0.8 0.75 0.10 6 
MAL-XX2-1 Massive unidentify Reef flat 150 1 0.90 0.06 5 
MAL-XX3-1 Massive unidentify Forereef 155 3.5 0.86 0.04 3 
MAL-XX3-2 Massive unidentify Forereef 155 3.5 0.74 0.12 5 

 

 

Table 2 
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Sample Salinity Genus δ44/40Ca (‰) 2SEM (‰) N 
MC-Acr-36/1 36 Acropora sp. 0.71 0.06 3 
MC-Acr-36/2 36 Acropora sp. 0.8 0.04 3 
MC-Acr-36/4 36 Acropora sp. 0.76 0.1 3 
MC-Acr-38/1 38 Acropora sp. 0.77 0.10 3 
MC-Acr-38/2 38 Acropora sp. 0.74 0.04 3 
MC-Acr-40/1 40 Acropora sp. 0.72 0.03 3 
MC-Acr-40/5 40 Acropora sp. 0.85 0.05 3 
MC-Acr-40/6 40 Acropora sp. 0.92 0.10 3 
MC-Mon-36/1 36 M. verrucosa 0.73 0.09 3 
MC-Mon-36/2 36 M. verrucosa 0.83 0.01 3 
MC-Mon-36/3 36 M. verrucosa 0.88 0.09 3 
MC-Mon-38/1 38 M. verrucosa 0.93 0.11 5 
MC-Mon-38/2 38 M. verrucosa 0.86 0.13 3 
MC-Mon-40/1 40 M. verrucosa 0.71 0.11 3 
MC-Mon-40/4 40 M. verrucosa 0.85 0.03 3 
MC-Sty-36/1 36 S. pistillata 0.68 0.09 3 
MC-Sty-36/3 36 S. pistillata 0.7 0.07 3 
MC-Sty-36/5a 36 S. pistillata 0.69 0.05 3 
MC-Sty-38/1 38 S. pistillata 0.65 0.03 3 
MC-Sty-38/3 38 S. pistillata 0.84 0.09 3 
MC-Sty-38/5 38 S. pistillata 0.64 0.12 3 
MC-Sty-40/1 40 S. pistillata 0.85 0.09 3 
MC-Sty-40/4 40 S. pistillata 0.98 0.06 3 
MC-Sty-40/5 40 S. pistillata 0.62 0.04 3 

 

 

Table 3 
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F-test between two salinities p-values 

36-38 0.016 

36-40 0.006 

38-40 0.553 

 

 

Table 4 

 


