194 research outputs found

    Investigating Surface Performance Trade-offs of Unimpeded Taxiways

    Get PDF
    Optimizing usage of unimpeded taxiways is a near-term operational change to mitigate emission impact on aviation and increase efficiency at airports. An unimpeded taxiway is a path for an aircraft to taxi around an active runway. Unimpeded taxiways provide benefits such as increased departure throughput, increased safety, reduced surface congestion, more efficient taxi-in procedures, and thereby also yield environmental benefits. The goals of this work are to investigate the use of current taxiways, examine surface performance and fuel burn trade-offs, and to develop a decision-support model based on potential fuel savings of unimpeded taxiways. This study analyzes unimpeded taxiway use at Hartsfield-Jackson International Airport (ATL), Dallas/Fort-Worth International Airport (DFW), and Detroit Metro Airport (DTW) using ASDE-X data from 10 September 2012 to 28 February 2013. The trends and patterns of aircraft taxi routes show the unimpeded taxiway is used the most during peak arrival and peak departure hours. This study provides decision-makers at the operations level a practical guidance tool with the necessary information to effectively use unimpeded taxiways and conventional taxiways from an environmental perspective. Decision rules were developed to maximize fuel savings. The decision scenario analysis concluded that the most promising decision rule at ATL, DFW, and DTW to yield the most environmental benefit is based on multiple factors. The multi-factor decision rule based on terminal destination, arrival time, and aircraft type resulted in an average aircraft fuel savings of 8.1% to 20.4%

    Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction

    Get PDF
    BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression

    Association Analysis of 94 Candidate Genes and Schizophrenia-Related Endophenotypes

    Get PDF
    While it is clear that schizophrenia is highly heritable, the genetic basis of this heritability is complex. Human genetic, brain imaging, and model organism studies have met with only modest gains. A complementary research tactic is to evaluate the genetic substrates of quantitative endophenotypes with demonstrated deficits in schizophrenia patients. We used an Illumina custom 1,536-SNP array to interrogate 94 functionally relevant candidate genes for schizophrenia and evaluate association with both the qualitative diagnosis of schizophrenia and quantitative endophenotypes for schizophrenia. Subjects included 219 schizophrenia patients and normal comparison subjects of European ancestry and 76 schizophrenia patients and normal comparison subjects of African ancestry, all ascertained by the UCSD Schizophrenia Research Program. Six neurophysiological and neurocognitive endophenotype test paradigms were assessed: prepulse inhibition (PPI), P50 suppression, the antisaccade oculomotor task, the Letter-Number Span Test, the California Verbal Learning Test-II, and the Wisconsin Card Sorting Test-64 Card Version. These endophenotype test paradigms yielded six primary endophenotypes with prior evidence of heritability and demonstrated schizophrenia-related impairments, as well as eight secondary measures investigated as candidate endophenotypes. Schizophrenia patients showed significant deficits on ten of the endophenotypic measures, replicating prior studies and facilitating genetic analyses of these phenotypes. A total of 38 genes were found to be associated with at least one endophenotypic measure or schizophrenia with an empirical p-value<0.01. Many of these genes have been shown to interact on a molecular level, and eleven genes displayed evidence for pleiotropy, revealing associations with three or more endophenotypic measures. Among these genes were ERBB4 and NRG1, providing further support for a role of these genes in schizophrenia susceptibility. The observation of extensive pleiotropy for some genes and singular associations for others in our data may suggest both converging and independent genetic (and neural) pathways mediating schizophrenia risk and pathogenesis

    NETosis in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Its neuropathological features include amyloid-\u3b2 (A\u3b2) accumulation, the formation of neurofibrillary tangles, and the loss of neurons and synapses. Neuroinflammation is a well-established feature of AD pathogenesis, and a better understanding of its mechanisms could facilitate the development of new therapeutic approaches. Recent studies in transgenic mouse models of AD have shown that neutrophils adhere to blood vessels and migrate inside the parenchyma. Moreover, studies in human AD subjects have also shown that neutrophils adhere and spread inside brain vessels and invade the parenchyma, suggesting these cells play a role in AD pathogenesis. Indeed, neutrophil depletion and the therapeutic inhibition of neutrophil trafficking, achieved by blocking LFA-1 integrin in AD mouse models, significantly reduced memory loss and the neuropathological features of AD. We observed that neutrophils release neutrophil extracellular traps (NETs) inside blood vessels and in the parenchyma of AD mice, potentially harming the blood-brain barrier and neural cells. Furthermore, confocal microscopy confirmed the presence of NETs inside the cortical vessels and parenchyma of subjects with AD, providing more evidence that neutrophils and NETs play a role in AD-related tissue destruction. The discovery of NETs inside the AD brain suggests that these formations may exacerbate neuro-inflammatory processes, promoting vascular and parenchymal damage during AD. The inhibition of NET formation has achieved therapeutic benefits in several models of chronic inflammatory diseases, including autoimmune diseases affecting the brain. Therefore, the targeting of NETs may delay AD pathogenesis and offer a novel approach for the treatment of this increasingly prevalent disease

    Differences in the Tumor Microenvironment between African-American and European-American Breast Cancer Patients

    Get PDF
    Background: African-American breast cancer patients experience higher mortality rates than European-American patients despite having a lower incidence of the disease. We tested the hypothesis that intrinsic differences in the tumor biology may contribute to this cancer health disparity. Methods and Results: Using laser capture microdissection, we examined genome-wide mRNA expression specific to tumor epithelium and tumor stroma in 18 African-American and 17 European-American patients. Numerous genes were differentially expressed between these two patient groups and a two-gene signature in the tumor epithelium distinguished between them. To identify the biological processes in tumors that are different by race/ethnicity, Gene Ontology and disease association analyses were performed. Several biological processes were identified which may contribute to enhanced disease aggressiveness in African-American patients, including angiogenesis and chemotaxis. African-American tumors also contained a prominent interferon signature. The role of angiogenesis in the tumor biology of African-American

    Basonuclin-2 Requirements for Zebrafish Adult Pigment Pattern Development and Female Fertility

    Get PDF
    Relatively little is known about the generation of adult form. One complex adult trait that is particularly amenable to genetic and experimental analysis is the zebrafish pigment pattern, which undergoes extensive remodeling during post-embryonic development to form adult stripes. These stripes result from the arrangement of three classes of neural crest-derived pigment cells, or chromatophores: melanophores, xanthophores, and iridophores. Here, we analyze the zebrafish bonaparte mutant, which has a normal early pigment pattern but exhibits a severe disruption to the adult stripe pattern. We show that the bonaparte mutant phenotype arises from mutations in basonuclin-2 (bnc2), encoding a highly conserved, nuclear-localized zinc finger protein of unknown function. We show that bnc2 acts non-autonomously to the melanophore lineage and is expressed by hypodermal cells adjacent to chromatophores during adult pigment pattern formation. In bonaparte (bnc2) mutants, all three types of chromatophores differentiate but then are lost by extrusion through the skin. We further show that while bnc2 promotes the development of two genetically distinct populations of melanophores in the body stripes, chromatophores of the fins and scales remain unaffected in bonaparte mutants, though a requirement of fin chromatophores for bnc2 is revealed in the absence of kit and colony stimulating factor-1 receptor activity. Finally, we find that bonaparte (bnc2) mutants exhibit dysmorphic ovaries correlating with infertility and bnc2 is expressed in somatic ovarian cells, whereas the related gene, bnc1, is expressed within oocytes; and we find that both bnc2 and bnc1 are expressed abundantly within the central nervous system. These findings identify bnc2 as an important mediator of adult pigment pattern formation and identify bonaparte mutants as an animal model for dissecting bnc2 functions

    Association of the Colorectal CpG Island Methylator Phenotype with Molecular Features, Risk Factors, and Family History

    Get PDF
    The CpG Island Methylator Phenotype (CIMP) represents a subset of colorectal cancers (CRCs) characterized by widespread aberrant DNA hypermethylation at select CpG islands. The risk factors and environmental exposures contributing to etiologic heterogeneity between CIMP and non-CIMP tumors are not known

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Association of the Colorectal CpG Island Methylator Phenotype with Molecular Features, Risk Factors, and Family History

    Get PDF
    BACKGROUND: The CpG Island Methylator Phenotype (CIMP) represents a subset of colorectal cancers (CRCs) characterized by widespread aberrant DNA hypermethylation at select CpG islands. The risk factors and environmental exposures contributing to etiologic heterogeneity between CIMP and non-CIMP tumors are not known. METHODS: We measured the CIMP status of 3,119 primary population-based CRC tumors from the multinational Colon Cancer Family Registry. Etiologic heterogeneity was assessed by a case-case study comparing risk factor frequency of CRC cases with CIMP and non-CIMP tumors using logistic regression to estimate the case-case odds ratio (ccOR). RESULTS: We found associations between tumor CIMP status and MSI-H (ccOR=7.6), BRAF V600E mutation (ccOR=59.8), proximal tumor site (ccOR=9) (all p<0.0001), female sex (ccOR=1.8; 95% CI=1.5-2.1), older age (ccOR=4.0 comparing over 70 years vs under 50; 95% CI=3.0-5.5) and family history of CRC (ccOR=0.6, 95% CI=0.5-0.7). While use of NSAIDs varied by tumor CIMP status for both males and females (p=0.0001 and p=0.02, respectively), use of multi-vitamin or calcium supplements did not. Only for female CRCs was CIMP status associated with increased pack-years of smoking (trend p < 0.001) and body mass index (BMI) (trend p = 0.03). CONCLUSIONS: The frequency of several CRC risk factors varied by CIMP status, and the associations of smoking and obesity with tumor subtype were evident only for females. IMPACT: Differences in the associations of a unique DNA methylation-based subgroup of CRC with important lifestyle and environmental exposures increase understanding of the molecular pathologic epidemiology of this heavily methylated subset of CRCs
    • …
    corecore