170 research outputs found

    Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search

    Get PDF
    The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV–PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given.Acknowledgements The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Européenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Île-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Università e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovación, Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolía (ref. GRISOLIA/2018/119) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049) programs, Junta de Andalucía (ref. A-FQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain

    Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope

    Full text link
    Active galaxies, especially blazars, are among the most promising neutrino source candidates. To date, ANTARES searches for these objects considered GeV-TeV γ\gamma-ray bright blazars. Here, a statistically complete radio-bright blazar sample is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 years of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and by a complementary likelihood-based approach. The resulting post-trial pp-value is 3.0%3.0\% (2.2σ2.2\sigma in the two-sided convention), possibly indicating a correlation. Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a mean of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pre-trial significance above 3σ3\sigma indicates a p=1.4%p=1.4\% (2.5σ2.5\sigma in the two-sided convention) detection of a time-variable neutrino flux. An \textit{a posteriori} investigation reveals an intriguing temporal coincidence of neutrino, radio, and γ\gamma-ray flares of the J0242+1101 blazar at a p=0.5%p=0.5\% (2.9σ2.9\sigma in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars

    Search for neutrino counterparts to the gravitational wave sources from O3 catalogues with the ANTARES detector

    Full text link
    Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies >100>100\,GeV, thanks to the inclusion of both track-like events (mainly induced by νμ\nu_\mu charged-current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within ±500\pm 500\,s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,νE_{\rm tot, \nu} and on the fraction of the total energy budget fν=Etot,ν/Eradf_\nu = E_{\rm tot, \nu}/E_{\rm rad} emitted as neutrinos of all flavours are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star - black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,ν<4.0×1053E_{\rm tot, \nu} < 4.0 \times 10^{53}\,erg and fν<0.15f_\nu < 0.15 (respectively, Etot,ν<3.2×1053E_{\rm tot, \nu} < 3.2 \times 10^{53}\,erg and fν<0.88f_\nu < 0.88) for E2E^{-2} spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.Comment: 13 pages, 4 figure

    Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolia (ref. GRISOLIA/2018/119) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049) programs, Junta de Andalucia (ref. A-FQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain.The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multipurpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV–PeV neutrinos. Thanks to the multiphotomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. Themechanism of generation and distribution of alerts, aswell as the integration into theSNEWSandSNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overviewof the current detector capabilities and a report after the first two years of operation are given.French National Research Agency (ANR)European Commission ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)Commission EuropeenneInstitut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program, Italy NAT-NET 2017W4HA7SMinistry of Higher Education Scientific Research and Professional Training, ICTP, Morocco AF-13Netherlands Organization for Scientific Research (NWO) Netherlands GovernmentNational Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento PGC2018-096663-B-C41 PGC2018-096663-A-C42 PGC2018-096663-B-C43 PGC2018-096663-B-C44Generalitat Valenciana PROMETEO/2020/019Grisolia program GRISOLIA/2018/119 CIDEGENT/2018/034Junta de Andalucia A-FQM-053-UGR18La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program 101025085Paris Ile-de-France Region, FranceGenT program CIDEGENT/2018/034 CIDEGENT/2019/043 CIDEGENT/2020/04

    KM3NeT broadcast optical data transport system

    Get PDF
    The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed

    Probing invisible neutrino decay with KM3NeT-ORCA

    Get PDF
    In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state ν3\nu_3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/α3=τ3/m3<1801/\alpha_3=\tau_3/m_3 < 180~ps/eV\mathrm{ps/eV} at 90%90\% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for θ23\theta_{23}, Δm312\Delta m^2_{31} and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte

    Embedded Software of the KM3NeT Central Logic Board

    Full text link
    The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes

    Prospects for combined analyses of hadronic emission from γ\gamma-ray sources in the Milky Way with CTA and KM3NeT

    Get PDF
    The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major upcoming facilities in the fields of γ\gamma-ray and neutrino astronomy, respectively. Possible simultaneous production of γ\gamma rays and neutrinos in astrophysical accelerators of cosmic-ray nuclei motivates a combination of their data. We assess the potential of a combined analysis of CTA and KM3NeT data to determine the contribution of hadronic emission processes in known Galactic γ\gamma-ray emitters, comparing this result to the cases of two separate analyses. In doing so, we demonstrate the capability of Gammapy, an open-source software package for the analysis of γ\gamma-ray data, to also process data from neutrino telescopes. For a selection of prototypical γ\gamma-ray sources within our Galaxy, we obtain models for primary proton and electron spectra in the hadronic and leptonic emission scenario, respectively, by fitting published γ\gamma-ray spectra. Using these models and instrument response functions for both detectors, we employ the Gammapy package to generate pseudo data sets, where we assume 200 hours of CTA observations and 10 years of KM3NeT detector operation. We then apply a three-dimensional binned likelihood analysis to these data sets, separately for each instrument and jointly for both. We find that the largest benefit of the combined analysis lies in the possibility of a consistent modelling of the γ\gamma-ray and neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for the most favourable source, an average expected 68% credible interval that constrains the contribution of hadronic processes to the observed γ\gamma-ray emission to below 15%.Comment: 18 pages, 15 figures. Submitted to journa

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa

    Revista del Consejo Superior de Investigaciones Científicas

    Get PDF
    Estudio comparado de las comunidades de aves y mircromamíferos en campos de cereales del centro de España.Claves de identificación de Barbus bocagei, Chodrostoma polylepis, Leuciscus pyrenaicus y Cyprinus carpio mediante algunas de sus estructuras óseas.Distribución geográfica y hábitats ocupados por Galemys pyrenaicus (Geoffroy, 1811) (Insectivora: Talpidae) en los Pirineos occidentalesEfecto de la talla corporal, sexo y edad en el comportamiento agresivo del camaleón común (Chamaeleo chamaeleo L.) en cautividad.Identificación de fronteras bióticas significativas para los anfibios en la cuenca hidrográfica del sur de EspañaMigración e invernada de la avefria (Vanellus vanellus) en la Península Ibérica.Caracteristicas poblacionales del ganado bovino asilvestrado de la Reserva Biológica de Doñana (SO de España).Criterios de valoración de la edad relativa en Rattus norvegicus Berkenhout, 1769Dieta del corzo (Capreolus capreolus) en una localidad mediterránea (Quintos de Mora, Montes de Toledo)Características craneométricas de Neomys anomalus Cabrera, 1907 (Insectivora, Soricinae), en la Península Ibérica.Intoxicación por ingestión de perdigones de plomo en dos águilas realesPeer reviewe
    corecore