36 research outputs found

    3-D ionization structure (in stereoscopic view) of Planetary Nebulae: the case of NGC 1501

    Get PDF
    Long-slit echellograms of the high excitation planetary nebula NGC1501, reduced according to the methodology developed by Sabbadin et al. (2000a, b), allowed us to obtain the ``true'' distribution of the ionized gas in the eight nebular slices covered by the spectroscopic slit. A 3-D rendering procedure is described and applied, which assembles the tomographic maps and rebuilds the spatial structure. The images of NGC 1501, as seen in 12 directions separated by 15 deg, form a series of stereoscopic pairs giving surprising 3-D views in as many directions. The main nebula consists of an almost oblate ellipsoid of moderate ellipticity (a=44 arcsec, a/b=1.02, a/c=1.11), brighter in the equatorial belt, deformed by several bumps, and embedded in a quite homogeneous, inwards extended cocoon. Some reliability tests are applied to the rebuilt nebula; the radial matter profile, the small scale density fluctuations and the 2-D (morphology) - 3-D (structure) correlation are presented and analysed. The wide applications of the 3-D reconstruction to the morphology, physical conditions, ionization parameters and evolutionary status of expanding nebulae in general (planetary nebulae, nova and supernova remnants, shells around Population I Wolf-Rayet stars, nebulae ejected by symbiotic stars, bubbles surrounding early spectral type main sequence stars etc.) are introduced.Comment: 12 pages + 11 (gif) figures. Accepted for publication in A&A. A postscript file with figs. can be retrieved at http://panoramix.pd.astro.it/~sabbadi

    Towards a Synthesis of Core-Collapse Supernova Theory

    Get PDF
    New insights into the mechanism and character of core--collapse supernova explosions are transforming the approach of theorists to their subject. The universal realization that the direct hydrodynamic mechanism does not work and that a variety of hydrodynamic instabilities can influence the viability of theoretical explosions has ushered in a new era in supernova modeling. In this paper, I discuss the important physical and technical issues that remain. I review the neutrino--driven mechanism, the possible roles of Rayleigh--Taylor instabilities, questions in neutrino transport, and the various observational constraints within which theorists must operate. However, a consensus has yet to be achieved among active workers concerning many important details and some essential phenomenology. This synopsis is meant to accomplish two things: 1) to focus attention on the interesting problems whose resolution will bring needed progress, and 2) to assess the current status of the theoretical art.Comment: Eighteen Pages, Elsevier Elsart LaTeX format, no figures, to appear in Nucl. Phys. A, as a contribution to the Festschrift in honor of Gerald E. Brown's 70'th Birthday. PostScript version available from [email protected]

    Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era

    Full text link
    I review the prospects for studies of the advanced evolutionary stages of low-, intermediate- and high-mass stars by the JWST and concurrent facilities, with particular emphasis on how they may help elucidate the dominant contributors to the interstellar dust component of galaxies. Observations extending from the mid-infrared to the submillimeter can help quantify the heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI mid-infrared instrument will be so sensitive that observations of the dust emission from individual intergalactic AGB stars and planetary nebulae in the Virgo Cluster will be feasible. The Herschel Space Observatory will enable the last largely unexplored spectral region, the far-IR to the submillimeter, to be surveyed for new lines and dust features, while SOFIA will cover the wavelength gap between JWST and Herschel, a spectral region containing important fine structure lines, together with key water-ice and crystalline silicate bands. Spitzer has significantly increased the number of Type II supernovae that have been surveyed for early-epoch dust formation but reliable quantification of the dust contributions from massive star supernovae of Type II, Type Ib and Type Ic to low- and high-redshift galaxies should come from JWST MIRI observations, which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade: JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H. A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series: Astrophysics and Space Science Proceeding

    Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae

    Get PDF
    The definitive version can be found at : http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present the spectra of 32 previously unpublished confirmed and candidate Wolf-Rayet ([WR]) and weak emission-line (WELS) central stars of planetary nebulae (CSPNe). 18 stars have been discovered in the Macquarie/AAO/Strasbourg Ha (MASH) PN survey sample, and we have also uncovered 14 confirmed and candidate [WR]s and WELS among the CSPNe of previously known PNe. Spectral classifications have been undertaken using both Acker & Neiner and Crowther, De Marco & Barlow schemes. 22 members in this sample are identified as probable [WR] s; the remaining 10 appear to be WELS. Observations undertaken as part of the MASH spectroscopic survey have now increased the number of known [WR] s by similar to 30 per cent. This will permit a better analysis of [WR] subclass distribution, metallicity effects and evolutionary sequences in these uncommon objects.Peer reviewe

    Structural organization and chromosomal localization of three human galanin receptor genes

    No full text
    Human galanin receptor subtypes GALR1, GALR2, and GALR3 are encoded by separate genes that are located on human chromosomes 18q23, 17q25.3, and 22q13.1, respectively. The exon:intron organization of the gene encoding GALR2 (GALNR2) and GALR3 (GALNR3) is conserved, with exon 1 encoding the NH-terminus to the end of transmembrane domain 3 and exon 2 encoding the remainder of the receptor, from the second intracellular loop to the COOH-terminus. This conservation of structural organization is indicative of a common evolutionary origin for GALNR2 and GALNR3. The exon:intron organization of the gene encoding GALR1 (GALNR1) is different from that of GALNR2 and GALNR3, with exon 1 encoding the NH-terminus to the end of transmembrane domain 5, exon 2 encoding the third intracellular loop, and exon 3 encoding the remainder of the receptor, from transmembrane domain 6 to the COOH-terminus. The structural organization of GALNR1 suggests convergent evolution for this gene and represents a structural organization that is unique among genes encoding G-protein-coupled receptors
    corecore