11 research outputs found

    Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik

    Get PDF
    Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.Peer reviewe

    Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations

    Get PDF
    We employed a global high-resolution inverse model to optimize the CH4 emission using Greenhouse gas Observing Satellite (GOSAT) and surface observation data for a period from 2011–2017 for the two main source categories of anthropogenic and natural emissions. We used the Emission Database for Global Atmospheric Research (EDGAR v4.3.2) for anthropogenic methane emission and scaled them by country to match the national inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC). Wetland and soil sink prior fluxes were simulated using the Vegetation Integrative Simulator of Trace gases (VISIT) model. Biomass burning prior fluxes were provided by the Global Fire Assimilation System (GFAS). We estimated a global total anthropogenic and natural methane emissions of 340.9 Tg CH4 yr−1 and 232.5 Tg CH4 yr−1, respectively. Country-scale analysis of the estimated anthropogenic emissions showed that all the top-emitting countries showed differences with their respective inventories to be within the uncertainty range of the inventories, confirming that the posterior anthropogenic emissions did not deviate from nationally reported values. Large countries, such as China, Russia, and the United States, had the mean estimated emission of 45.7 ± 8.6, 31.9 ± 7.8, and 29.8 ± 7.8 Tg CH4 yr−1, respectively. For natural wetland emissions, we estimated large emissions for Brazil (39.8 ± 12.4 Tg CH4 yr−1), the United States (25.9 ± 8.3 Tg CH4 yr−1), Russia (13.2 ± 9.3 Tg CH4 yr−1), India (12.3 ± 6.4 Tg CH4 yr−1), and Canada (12.2 ± 5.1 Tg CH4 yr−1). In both emission categories, the major emitting countries all had the model corrections to emissions within the uncertainty range of inventories. The advantages of the approach used in this study were: (1) use of high-resolution transport, useful for simulations near emission hotspots, (2) prior anthropogenic emissions adjusted to the UNFCCC reports, (3) combining surface and satellite observations, which improves the estimation of both natural and anthropogenic methane emissions over spatial scale of countries

    Air-sea fluxes of greenhouse gases and oxygen in the northern Benguela Current region during upwelling events

    Get PDF
    Ground-based atmospheric observations of CO2, delta(O-2/N-2), N2O, and CH4 were used to make estimates of the air-sea fluxes of these species from the Luderitz and Walvis Bay upwelling cells in the northern Benguela region, during upwelling events. Average flux densities (+/- 1 sigma) were 0:65 +/- 0:4 mu mol m(-2) s(-1) for CO2, -5.1 +/- 2:5 mu mol m(-2) s(-1) for O-2 (as APO), 0:61 +/- 0:5 nmol m(-2) s(-1) for N2O, and 4:8 +/- 6:3 nmol m(-2)s(-1) for CH4. A comparison of our top-down (i.e., inferred from atmospheric anomalies) flux estimates with shipboard-based measurements showed that the two approaches agreed within +/- 55% on average, though the degree of agreement varied by species and was best for CO2. Since the top-down method overestimated the flux density relative to the shipboard-based approach for all species, we also present flux density estimates that have been tuned to best match the shipboard fluxes. During the study, upwelling events were sources of CO2, N2O, and CH4 to the atmosphere. N2O fluxes were fairly low, in accordance with previous work suggesting that the evasion of this gas from the Benguela is smaller than for other eastern boundary upwelling systems (EBUS). Conversely, CH4 release was quite high for the marine environment, a result that supports studies that indicated a large sedimentary source of CH4 in the Walvis Bay area. These results demonstrate the suitability of atmospheric time series for characterizing the temporal variability of upwelling events and their influence on the overall marine greenhouse gas (GHG) emissions from the northern Benguela region.Peer reviewe

    INVERSION ESTIMATES OF METHANE EMISSION IN THE MIDDLE EAST IN 2010-2017 WITH GOSAT OBSERVATIONS

    Get PDF
    Ten years of Greenhouse gas Observing SATellite (GOSAT) observation achieves valuable retrievals for top-down methane (CH4) emissions estimates especially in regions lacking ground-based observations. This paper presents the long-term 2010-2017 trend in CH4 emissions in the Middle East countries. We use a global 0.1 degrees x 0.1 degrees high-resolution inverse model, NIES-TM-FLEXPART-VAR (NTFVAR) with GOSAT retrievals and surface observations. Prior fluxes contain adjusted EDGAR v4.3.2 scaled to match the country totals by national reports to the United Nations Framework Convention on Climate Change (UNFCCC), augmented by biomass burning emissions from Global Fire Assimilation System (GFASv1.2) and wetlands emissions from Vegetation Integrative Simulator for Trace Gases (VISIT) model. The result shows the total annual CH4 emission of 23.54 Tg CH(4)yr(-1) in the Middle East with more than 95% emissions from anthropogenic sources, and there is no statistically significant emissions trend from 2010 to 2017.Peer reviewe

    African biomass burning affects aerosol cycling over the Amazon

    No full text
    Abstract Smoke from vegetation fires affects air quality, atmospheric cycling, and the climate in the Amazon rain forest. A major unknown has remained the quantity of long-range transported smoke from Africa in relation to local and regional fire emissions. Here we quantify the abundance, seasonality, and properties of African smoke in central Amazonia. We show that it accounts for ~ 60% of the black carbon concentrations during the wet season and ~ 30% during the dry season. The African smoke influences aerosol-radiation interactions across the entire Amazon, with the strongest impact on the vulnerable eastern basin, a hot spot of climate and land use change. Our findings further suggest that the direct influence of African smoke has been historically relevant for soil fertilization, the carbon and water cycles, and, thus, the development of the Amazon forest ecosystem, even in the pre-industrial era

    ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO

    Get PDF
    Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON– CHUVA) venture to quantify aerosol–cloud–precipitation interactions and their thermodynamic, dynamic, and radiative effects by in situ and remote sensing measurements over Amazonia. The ACRIDICON–CHUVA field observations were carried out in cooperation with the second intensive operating period of Green Ocean Amazon 2014/15 (GoAmazon2014/5). In this paper we focus on the airborne data measured on HALO, which was equipped with about 30 in situ and remote sensing instruments for meteorological, trace gas, aerosol, cloud, precipitation, and spectral solar radiation measurements

    Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2020; obspack_co2_1_GLOBALVIEWplus_v7.0_2021-08-18

    No full text
    This product is constructed using the Observation Package (ObsPack) framework [Masarie et al., 2014; www.earth-syst-sci-data.net/6/375/2014/]. The framework is designed to bring together atmospheric greenhouse gas (GHG) observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. ObsPack products are intended to support GHG budget studies and represent a new generation of cooperative value-added GHG data products. This product includes 524 atmospheric carbon dioxide datasets derived from observations made by 63 laboratories from 21 countries. Data for the period 1957-2020 (where available) are included
    corecore