104 research outputs found

    The use of vector bootstrapping to improve variable selection precision in Lasso models

    Get PDF
    The Lasso is a shrinkage regression method that is widely used for variable selection in statistical genetics. Commonly, K-fold cross-validation is used to fit a Lasso model. This is sometimes followed by using bootstrap confidence intervals to improve precision in the resulting variable selections. Nesting cross-validation within bootstrapping could provide further improvements in precision, but this has not been investigated systematically. We performed simulation studies of Lasso variable selection precision (VSP) with and without nesting cross-validation within bootstrapping. Data were simulated to represent genomic data under a polygenic model as well as under a model with effect sizes representative of typical GWAS results. We compared these approaches to each other as well as to software defaults for the Lasso. Nested cross-validation had the most precise variable selection at small effect sizes. At larger effect sizes, there was no advantage to nesting. We illustrated the nested approach with empirical data comprising SNPs and SNP-SNP interactions from the most significant SNPs in a GWAS of borderline personality symptoms. In the empirical example, we found that the default Lasso selected low-reliability SNPs and interactions which were excluded by bootstrapping

    Treatment with Glucocorticoids or Calcineurin Inhibitors in Primary FSGS

    Get PDF
    In primary FSGS, calcineurin inhibitors have primarily been studied in patients deemed resistant to glucocorticoid therapy. Few data are available about their use early in the treatment of FSGS. We sought to estimate the association between choice of therapy and ESRD in primary FSGS

    An Analysis of the Legal, Social, and Political Issues Raised by Asbestos Litigation

    Get PDF
    This Special Project examines the most important issues of the asbestos problem and advocates a congressional solution (1) to relieve the courts of the thousands of present and potential asbestos cases, (2) to protect future claimants\u27 rights to adequate compensation, and (3) to provide for equitable participation by all responsible parties, which, in addition to asbestos manufacturers,include the federal government, insurance companies, and the tobacco industry. The first six parts of the Special Project examine the various issues of asbestos litigation: theories of liability in products liability suits against asbestos manufacturers, causation,defenses, statutory limitations on actions, collateral estoppel, and punitive damages. The Special Project then discusses in parts VIII,IX, and X the methods used by asbestos manufacturers to attempt to spread their liability through asserting insurer liability, the exclusive remedy of workers\u27 compensation, and indemnity and contribution from the United States. Finally, the Special Project evaluates and analyzes recent developments in the asbestos litigation area, including proposals for federal legislative compensation programs and business alternatives available to asbestos manufacturers facing enormous asbestos-related liabilities... This Special Project critically has examined the most important issues concerning the asbestos problem. It has considered the complex legal, legislative, and social questions that society must confront in order to resolve this predicament. Only swift action by Congress in the form of a fair and comprehensive compensation scheme for victims of asbestos-related disabilities will initiate a solution to this difficult and pervasive problem

    HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics

    Get PDF
    Motivation Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients (r2 ) of the variants. However, haplotypes rather than pairwise r2 , are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this article, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel. Results Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits height data, HAPRAP performs well with a small training sample size (N < 2000) while other methods become suboptimal. Moreover, HAPRAP’s performance is not affected substantially by single nucleotide polymorphisms (SNPs) with low minor allele frequencies. We applied the method to existing quantitative trait and binary outcome meta-analyses (human height, QTc interval and gallbladder disease); all previous reported association signals were replicated and two additional variants were independently associated with human height. Due to the growing availability of summary level data, the value of HAPRAP is likely to increase markedly for future analyses (e.g. functional prediction and identification of instruments for Mendelian randomization)

    Genome-wide survey of parent-of-origin effects on DNA methylation identifies candidate imprinted loci in humans

    Get PDF
    Genomic imprinting is an epigenetic mechanism leading to parent-of-origin silencing of alleles. So far, the precise number of imprinted regions in humans is uncertain. In this study, we leveraged genome-wide DNA methylation in whole blood measured longitudinally at 3 time points (birth, childhood and adolescence) and GWAS data in 740 Mother-Child duos from the Avon Longitudinal Study of Parents and Children to identify candidate imprinted loci. We reasoned that cis-meQTLs at genomic regions that were imprinted would show strong evidence of parent-of-origin associations with DNA methylation, enabling the detection of imprinted regions. Using this approach, we identified genome-wide significant cis-meQTLs that exhibited parent-of-origin effects (POEs) at 82 loci, 34 novel and 48 regions previously implicated in imprinting (3.7-10< P

    Reduced Plasmodium vivax Erythrocyte Infection in PNG Duffy-Negative Heterozygotes

    Get PDF
    BACKGROUND: Erythrocyte Duffy blood group negativity reaches fixation in African populations where Plasmodium vivax (Pv) is uncommon. While it is known that Duffy-negative individuals are highly resistant to Pv erythrocyte infection, little is known regarding Pv susceptibility among heterozygous carriers of a Duffy-negative allele (+/−). Our limited knowledge of the selective advantages or disadvantages associated with this genotype constrains our understanding of the effect that interventions against Pv may have on the health of people living in malaria-endemic regions. METHODS AND FINDINGS: We conducted cross-sectional malaria prevalence surveys in Papua New Guinea (PNG), where we have previously identified a new Duffy-negative allele among individuals living in a region endemic for all four human malaria parasite species. We evaluated infection status by conventional blood smear light microscopy and semi-quantitative PCR-based strategies. Analysis of a longitudinal cohort constructed from our surveys showed that Duffy heterozygous (+/−) individuals were protected from Pv erythrocyte infection compared to those homozygous for wild-type alleles (+/+) (log-rank tests: LM, p = 0.049; PCR, p = 0.065). Evaluation of Pv parasitemia, determined by semi-quantitative PCR-based methods, was significantly lower in Duffy +/− vs. +/+ individuals (Mann-Whitney U: p = 0.023). Overall, we observed no association between susceptibility to P. falciparum erythrocyte infection and Duffy genotype. CONCLUSIONS: Our findings provide the first evidence that Duffy-negative heterozygosity reduces erythrocyte susceptibility to Pv infection. As this reduction was not associated with greater susceptibility to Pf malaria, our in vivo observations provide evidence that Pv-targeted control measures can be developed safely

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore