6 research outputs found

    CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes.

    Get PDF
    CD4+ T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4+ T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4+ cells allowing us to scrutinize the development and specialization of teleost CD4+ leukocytes in vivo. We provide further evidence that CD4+ macrophages have an ancient origin and had already emerged in bony fish. We demonstrate the utility of this zebrafish resource for interrogating the complex behavior of immune cells at cellular resolution by the imaging of intimate contacts between teleost CD4+ T cells and mononuclear phagocytes. Most importantly, we reveal the conserved subspecialization of teleost CD4+ T cells in vivo. We demonstrate that the ancient and specialized tissues of the gills contain a resident population of il-4/13b-expressing Th2-like cells, which do not coexpress il-4/13a Additionally, we identify a contrasting population of regulatory T cell-like cells resident in the zebrafish gut mucosa, in marked similarity to that found in the intestine of mammals. Finally, we show that, as in mammals, zebrafish CD4+ T cells will infiltrate melanoma tumors and obtain a phenotype consistent with a type 2 immune microenvironment. We anticipate that this unique resource will prove invaluable for future investigation of T cell function in biomedical research, the development of vaccination and health management in aquaculture, and for further research into the evolution of adaptive immunity.European Research Council (Grant IDs: ERC-2011-StG-282059 (PROMINENT), 677501 (ZF_Blood)), Biotechnology and Biological Sciences Research Council (Grant ID: BB/L007401/1), Dowager Countess Eleanor Peel Trust (Grant ID: TH-PRCL.FID2228), Medical Research Council, Department for International Development (Career Development Award Fellowship MR/J009156/1), Medical Research Foundation (Grant ID: R/140419), Cancer Research UK (Grant ID: C45041/A14953), Wellcome Trust and Medical Research Council to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute (core support grant)This is the final version of the article. It first appeared from The American Association of Immunologists via https://doi.org/10.4049/​jimmunol.160095

    α5ÎČ1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3

    Get PDF
    Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5ÎČ1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5ÎČ1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo

    α5ÎČ1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3

    Get PDF
    [Abstract]: Adaptive and fluid applications development methodologies such as Prototyping, RAD, FAD and Ex-treme Programming have emerged in recent years in response to organisational realities that include rapid change, uncertainty and ambiguity. These methodologies are well suited to the team-based approach that has become so important in the modern organisation. Yet, many educational programmes in the West still focus on individual learning and assessment. This paper reports on a pilot study where team-based methods are incorporated into a demanding undergraduate I.T. course. An attempt is also made to create a learning environment that incorporates elements of the ‘real world.’ It is established that a team-based approach, where there is a focus on interdependency and group learning, can lead to some dramatic improvements in the performance of IT students but a number of unexpected problems emerge
    corecore