48 research outputs found

    Imaging of arrhythmia: Real-time cardiac magnetic resonance imaging in atrial fibrillation

    Get PDF
    Objectives Quantitative evaluations of function, volume and mass are fundamental in the diagnostic workup of different cardiovascular diseases and can be exactly determined by CMRI in sinus rhythm. This does not hold true in arrhythmia as CMR is hampered by reconstruction artifacts caused by inconsistent data from multiple heartbeats. Real-time (RT) MRI at high temporal resolution might reduce these problems. Methods Consecutive patients with atrial fibrillation were prospectively included and underwent RT and conventional CINE CMR in randomized order. 29 patients were studied at 1.5 T and 30 patients at 3 T. At 3 T a group of 20 subjects in sinus rhythm served as controls. RT and CINE image quality was evaluated in different planes and for different wall sections using a Likert scale (from zero to four). Volumetric analysis was performed using two types of software and differences between RT and CINE CMR were evaluated. Results In patients with atrial fibrillation RT CMR short axis (SA) resulted in a significantly higher image quality compared to CINE imaging both at 1.5 T and 3 T (1.5 T: mid SA: 3.55 ± 0.5 RT vs 2.6 ± 0.9 CINE, p = 0.0001; 3 T: mid SA: 3.15 ± 0.9 RT vs 2.6 ±1.0 CINE, p = 0.03); This qualitative difference was more marked and significant for the long axis views (2CV and 4CV) at 1.5 T (1.5 T: 2CV: 3.2 ± 0.6 RT vs 2.65 ± 1.1 CINE; p = 0.011; 4CV: 2.9 ± 0.69 RT vs 2.4 ± 0.9 CINE; p = 0.0044). During sinus rhythm CINE images were superior concerning diagnostic quality (3 T mid SA: 3.35 ± 0.45 RT vs 3.8 ± 0.5 CINE, p = 0.008). Quantitative analysis was successful with both software packages and the results showed a good correlation (Pearson correlation between 0.679 and 0.921 for patients). RT CMR resulted in slightly lower functional volumes than CINE CMR (3 T: patients: EDVI 86 ± 29 ml/m2 RT vs 93 29 ml/m2± 29 CINE, Pearson r = 0.902) but similar ejection fractions (3 T: patients: EF 47 ± 16% RT vs 45 ± 13% CINE, Pearson r = 0679; controls: EF 63 ± 6 RT vs 63 ± 3 CINE, Pearson r = 0.695). Conclusion RT CMR improves image quality in arrhythmic patients and renders studies more comfortable. Volumetric analysis is feasible with slightly lower values relative to CINE CMR, while ejection fractions are comparable

    Cognitive reserve and the risk of postoperative neurocognitive disorders in older age

    Get PDF
    BACKGROUND: Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) are postoperative neurocognitive disorders (PNDs) that frequently occur in the aftermath of a surgical intervention. Cognitive reserve (CR) is a concept posited to explain why cognitive health varies between individuals. On this qualitative understanding of cognitive health, factors like IQ, education level, and occupational complexity can affect the impact of neuropathological processes on cognitive outcomes. METHODS: We investigated the association between CR and POD and CR and POCD on data from 713 patients aged≥65 years with elective surgery. Peak pre-morbid IQ was estimated from vocabulary. Occupational complexity was coded according to the Dictionary of Occupational Titles (DOT). Education level was classed according to the International Standard Classification of Education (ISCED). These three factors were used as proxies of CR. In a series of regression models, age, sex, depression, site of surgery, and several lifestyle and vascular factors were controlled for. RESULTS: Patients with a higher IQ had lower odds of developing POD. We found no significant association between the other two CR markers with POD. None of the CR markers was associated with POCD. CONCLUSION: The significant association of a higher IQ with lower POD risk allows for the stratification of elderly surgical patients by risk. This knowledge can aid the prevention and/or early detection of POD. Further research should attempt to determine the lack of associations of CR markers with POCD in our study

    Microsaccades and preparatory set: a comparison between delayed and immediate, exogenous and endogenous pro- and anti-saccades

    Get PDF
    When we fixate an object, our eyes are not entirely still, but undergo small displacements such as microsaccades. Here, we investigate whether these microsaccades are sensitive to the preparatory processes involved in programming a saccade. We show that the frequency of microsaccades depends in a specific manner on the intention where to move the eyes (towards a target location or away from it), when to move (immediately after the onset of the target or after a delay), and what type of cue is followed (a peripheral onset or a centrally presented symbolic cue). In particular, in the preparatory interval before and early after target onset, more microsaccades were found when a delayed saccade towards a peripheral target was prepared than when a saccade away was programmed. However, no such difference in the frequency of microsaccades was observed when saccades were initiated immediately after the onset of the target or when the saccades were programmed on the basis of a centrally presented arrow cue. The results are discussed in the context of the neural correlates of response preparation, known as preparatory set.status: publishe

    Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics.

    Get PDF
    BACKGROUND:Previous research has shown that use of a dynamic-response prosthetic foot (DRF) that incorporates a small passive hydraulic ankle device (hyA-F), provides certain biomechanical benefits over using a DRF that has no ankle mechanism (rigA-F). This study investigated whether use of a hyA-F in unilateral trans-tibial amputees (UTA) additionally provides metabolic energy expenditure savings and increases the symmetry in walking kinematics, compared to rigA-F. METHODS:Nine active UTA completed treadmill walking trials at zero gradient (at 0.8, 1.0, 1.2, 1.4, and 1.6 of customary walking speed) and for customary walking speed only, at two angles of decline (5° and 10°). The metabolic cost of locomotion was determined using respirometry. To gain insights into the source of any metabolic savings, 3D motion capture was used to determine segment kinematics, allowing body centre of mass dynamics (BCoM), differences in inter-limb symmetry and potential for energy recovery through pendulum-like motion to be quantified for each foot type. RESULTS:During both level and decline walking, use of a hyA-F compared to rigA-F significantly reduced the total mechanical work and increased the interchange between the mechanical energies of the BCoM (recovery index), leading to a significant reduction in the metabolic energy cost of locomotion, and hence an associated increase in locomotor efficiency (p < 0.001). It also increased inter-limb symmetry (medio-lateral and progression axes, particularly when walking on a 10° decline), highlighting the improvements in gait were related to a lessening of the kinematic compensations evident when using the rigA-F. CONCLUSIONS:Findings suggest that use of a DRF that incorporates a small passive hydraulic ankle device will deliver improvements in metabolic energy expenditure and kinematics and thus should provide clinically meaningful benefits to UTAs' everyday locomotion, particularly for those who are able to walk at a range of speeds and over different terrains

    Fixation durations in scene viewing:Modeling the effects of local image features, oculomotor parameters, and task

    Get PDF
    Scene perception requires the orchestration of image- and task-related processes with oculomotor constraints. The present study was designed to investigate how these factors influence how long the eyes remain fixated on a given location. Linear mixed models (LMMs) were used to test whether local image statistics (including luminance, luminance contrast, edge density, visual clutter, and the number of homogeneous segments), calculated for 1° circular regions around fixation locations, modulate fixation durations, and how these effects depend on task-related control. Fixation durations and locations were recorded from 72 participants, each viewing 135 scenes under three different viewing instructions (memorization, preference judgment, and search). Along with the image-related predictors, the LMMs simultaneously considered a number of oculomotor and spatiotemporal covariates, including the amplitudes of the previous and next saccades, and viewing time. As a key finding, the local image features around the current fixation predicted this fixation’s duration. For instance, greater luminance was associated with shorter fixation durations. Such immediacy effects were found for all three viewing tasks. Moreover, in the memorization and preference tasks, some evidence for successor effects emerged, such that some image characteristics of the upcoming location influenced how long the eyes stayed at the current location. In contrast, in the search task, scene processing was not distributed across fixation durations within the visual span. The LMM-based framework of analysis, applied to the control of fixation durations in scenes, suggests important constraints for models of scene perception and search, and for visual attention in general
    corecore