718 research outputs found

    The IOVP effect in mindless reading: Experiment and modeling

    Get PDF
    AbstractFixation durations in reading are longer for within-word fixation positions close to word center than for positions near word boundaries. This counterintuitive result was termed the Inverted-Optimal Viewing Position (IOVP) effect. We proposed an explanation of the effect based on error-correction of mislocated fixations [Nuthmann, A., Engbert, R., & Kliegl, R. (2005). Mislocated fixations during reading and the inverted optimal viewing position effect. Vision Research, 45, 2201–2217], that suggests that the IOVP effect is not related to word processing. Here we demonstrate the existence of an IOVP effect in “mindless reading”, a z-string scanning task. We compare the results from experimental data with results obtained from computer simulations of a simple model of the IOVP effect and discuss alternative accounts. We conclude that oculomotor errors, which often induce mislocalized fixations, represent the most important source of the IOVP effect

    Mislocated fixations during reading and the inverted optimal viewing position effect

    Get PDF
    AbstractRefixation probability during reading is lowest near the word center, suggestive of an optimal viewing position (OVP). Counterintuitively, fixation durations are largest at the OVP, a result called the inverted optimal viewing position (IOVP) effect [Vitu, McConkie, Kerr, & O’Regan, (2001). Vision Research 41, 3513–3533]. Current models of eye-movement control in reading fail to reproduce the IOVP effect. We propose a simple mechanism for generating this effect based on error-correction of mislocated fixations due to saccadic errors. First, we propose an algorithm for estimating proportions of mislocated fixations from experimental data yielding a higher probability for mislocated fixations near word boundaries. Second, we assume that mislocated fixations trigger an immediate start of a new saccade program causing a decrease of associated durations. Thus, the IOVP effect could emerge as a result of a coupling between cognitive and oculomotor processes

    Scaling of Horizontal and Vertical Fixational Eye Movements

    Full text link
    Eye movements during fixation of a stationary target prevent the adaptation of the photoreceptors to continuous illumination and inhibit fading of the image. These random, involuntary, small, movements are restricted at long time scales so as to keep the target at the center of the field of view. Here we use the Detrended Fluctuation Analysis (DFA) in order to study the properties of fixational eye movements at different time scales. Results show different scaling behavior between horizontal and vertical movements. When the small ballistics movements, i.e. micro-saccades, are removed, the scaling exponents in both directions become similar. Our findings suggest that micro-saccades enhance the persistence at short time scales mostly in the horizontal component and much less in the vertical component. This difference may be due to the need of continuously moving the eyes in the horizontal plane, in order to match the stereoscopic image for different viewing distance.Comment: 5 pages, 4 figure

    Oculomotor control in a sequential search task

    Get PDF
    AbstractUsing a serial search paradigm, we observed several effects of within-object fixation position on spatial and temporal control of eye movements: the preferred viewing location, launch site effect, the optimal viewing position, and the inverted optimal viewing position of fixation duration. While these effects were first identified by eye-movement studies in reading, our approach permits an analysis of the functional relationships between the effects in a different paradigm. Our results demonstrate that the fixation position is an important predictor of the subsequent saccade by influencing both fixation duration and the selection of the next saccade target
    corecore