108 research outputs found

    Hydrological processes and their seasonal controls in a small Mediterranean mountain catchment in the Pyrenees

    Get PDF
    The Vallcebre catchments are located in a middle mountain area of the Pyrenean ranges, built up by sedimentary rocks and loamy soils. The vegetation cover is pastures and forests of <i>Pinus sylvestris</i>, mostly occupying former agricultural terraces. Some relatively small, heavily eroded landscapes (badlands) occur in the catchments, playing a relevant hydrological and geomorphic role. Annual precipitation is 924 mm and potential (reference) evapotranspiration is about 700 mm. Rainfall interception in forests represents about 24% of precipitation; interception rates were similar throughout the seasons because of a compensation between rainfall intensities and atmospheric conditions. Soil moisture showed a temporal pattern characterised by the occurrence of marked deficit periods in summer and also, but less pronounced, in winter. During most of the year, subsurface flows on hillslopes drove the spatial organisation of soil moisture and the occurrence of saturated areas. Nevertheless, this spatial organisation was also controlled by the patterns of vegetation cover. During dry periods, subsurface flow ceased, saturated areas disappeared and the spatial patterns of soil moisture changed. Stream flow from these catchments was dominated by storm flow, and the runoff generating mechanisms showed a clear seasonal pattern, controlled mainly by the soil moisture and the extent of saturated areas. During the dry periods, runoff was produced only on impervious areas and badlands. At the end of the dry periods, some large rainfall events generated significant runoff because of the perched saturation of the shallow soil horizons. Thereafter, runoff generation was dominated by the role of saturated areas. Stream waters in catchments with badlands had very high suspended sediment concentrations. The seasonal pattern of erosion processes in badlands was characterised by physical weathering during winter, regolith breakdown and vigorous hillslope erosion during spring and summer, and efficient transport of sediments in autumn

    Developing a novel approach to analyse the regimes of temporary streams and their controls on aquatic biota

    Get PDF
    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls imposed by the hydrological regime. This paper develops some methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: flood, riffles, connected, pools, dry and arid. We used the water discharge records from gauging stations or simulations using rainfall-runoff models to infer the temporal patterns of occurrence of these states using the developed aquatic states frequency graph. The visual analysis of this graph is complemented by the development of two metrics based on the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of the aquatic regimes of temporary streams in terms of their influence over the development of aquatic life is put forward, defining Permanent, Temporary-pools, Temporary-dry and Episodic regime types. All these methods were tested with data from eight temporary streams around the Mediterranean from MIRAGE project and its application was a precondition to assess the ecological quality of these streams using the current methods prescribed in the European Water Framework Directive for macroinvertebrate communities

    Análisis del papel de las terrazas de cultivo abandonadas en la hidrología y dinámica de sedimentos en una pequeña cuenca de montaña

    Get PDF
    In the Cal Parisa basin (36 Ha) a sub-basin of 17 Ha was Instrumented In 1989 In order to study the hydrological response and the sediment dynamics of mountainous areas highly modified by traditional agriculture and now abandoned. The results show the preservative role of the agricultural terraces, characterized by a high water retention capacity and a very low sediment yield, in spite of significant amounts of sediment which are transferred within the basin but do not reach the outlet During rainy periods the partial saturation of terraces produces important runoff volumes quickly drained by the man made network of ditches, generating sharp runoff peaks. These ditches are shown therefore to be the elements of major hydrological and linear erosion risks. Nowadays the lack of drainage network maintenance, as a result of land abandonment, has caused disorganization which may have some Important hydro-geomorphological and land conservation consequences.[es] Dentro de la cuenca de Cal Parisa (36 Ha) una subcuenca de 17 Ha de superficie fue instrumentada en 1989 para el estudio de la respuesta hidrológica y la dinámica de sedimentos de áreas montañosas altamente modificadas por la agricultura tradicional y actualmente en estado de abandono. Los resultados obtenidos muestran el papel conservador del sistema de terrazas o bancales de cultivo que se manifiesta en una alta capacidad de retención hídrica y una muy baja producción de sedimentos, a pesar de que dentro de la cuenca se movilizan cantidades significativas de sedimentos que no alcanzan el exutorio. En períodos lluviosos la saturación parcial de las terrazas de cultivo produce importantes volúmenes de escorrentía que al ser canalizados rápidamente por el sistema de drenajes artifíciales provocan marcados picos de crecida, presentándose en consecuencia estos canales como los elementos de mayor riesgo hidrológico y de erosión lineal. Actualmente el cese en el mantenimiento del sistema de drenajes, como resultado del abandono de las labores agrícolas, provoca su desorganización, lo que puede acarrear importantes consecuencias hidrogeomofológicas como erosión en cárcavas y deslizamientos. [fr] Au sein du bassin versant de Cal Parisa (36 Ha) un sous-bassin de 17 Ha fut instrumenté en 1989 dans le but d'étudier la réponse hydrologique et la dynamique des sédiments en régions montagneuses fortement marquées par l'agriculture traditionnelle et actuellement abandonnées. Les résultats obtenus mettent en évidence le rôle conservateur du système de terrasses qui se caractérise par une grande capacité de rétention hydrique ainsi qu'une très faible production de sédiments, malgré les volumes de sédiments mobilisés dans le bassin mais qui n'atteignent pas l'exutoire. Lors de périodes pluvieuses, la saturation partielle des terrasses de culture produit d'importants volumes d'écoulement, qui, rapidement canalisés par le système de drainage artificiel, provoquent des pics de crue marqués, faisant par conséquent de ces canaux de drainage des éléments majeurs de risque hydrologique et d'érosion linéaire. Aujourd'hui, l'absence d'entretien du réseau de drainage, résultant de l'abandon des pratiques agricoles, entraine sa désorganisation susceptible de présenter d'importantes conséquences hydro-géomorphologiques comme le creusement de ravins et les glissements de terrain

    Spatio-temporal variability of stable isotopes (18 O and 2H) in soil and xylem waters under Mediterranean conditions.

    Get PDF
    Soil profiles and trees twigs were sampled in the Can Vila Mediterranean catchment (0.56 km2; Vallcebre Research catchments, NE Spain) to evaluate the spatial variability of the isotopic signature (18O and 2H) of xylem and bulk soil waters at the plot scale and between different locations within the catchment. During two one day sampling campaigns with different antecedent soil moisture conditions, soil samples (0-10, 10-20, 20-30, 40-50 and 90-100 cm) and xylem samples (3 trees per plot) were collected in six Scots pine stands distributed throughout the catchment. Moreover, the water stable isotopes analysed were collected in rainfall, groundwater and streamwater at the catchment outlet during and between the sampling campaigns. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. Stable isotopes ratios of bulk soil water and xylem water fell below the local meteoric water line (LMWL) in both sampling campaigns. In contrast, groundwater ratios fell along the LMWL, being well mixed with stream water. A marked vertical variation in soil water isotopes was observed for the dry campaign in all profiles, with enriched shallow horizons indicating evaporation. This variation was not observed for the wet campaign. Moreover, the spatial variation across the catchment was much greater for the dry campaign compared to the wet campaign. A marked variability in the xylem isotopic signature among trees of the same plot was observed for both sampling campaigns. Finally, in some plots and for both campaigns, the isotopic signature of xylem water was more evaporated than that of bulk soil water. There was no clear pattern relating the topographic index, as an indicator of saturation conditions of the sampling location within the catchment, with soil water isotopic signature. Nor was there a clear relationship found between the isotopic signature of pinesÂż xylem and tree characteristics, such as DBH, height, or tree competition index

    Internal evaluation of a physically-based distributed model using data from a Mediterranean mountain catchment

    Get PDF
    An evaluation of the performance of a physically-based distributed model of a small Mediterranean mountain catchment is presented. This was carried out using hydrological response data, including measurements of runoff, soil moisture, phreatic surface level and actual evapotranspiration. <i>A-priori</i> model parameterisation was based as far as possible on property data measured in the catchment. Limited model calibration was required to identify an appropriate value for terms controlling water loss to a deeper regional aquifer. The model provided good results for an initial calibration period, when judged in terms of catchment discharge. However, model performance for runoff declined substantially when evaluated against a consecutive, rather drier, period of data. Evaluation against other catchment responses allowed identification of the problems responsible for the observed lack of model robustness in flow simulation. In particular, it was shown that an incorrect parameterisation of the soil water model was preventing adequate representation of drainage from soils during hydrograph recessions. This excess moisture was then being removed via an overestimation of evapotranspiration. It also appeared that the model underestimated canopy interception. The results presented here suggest that model evaluation against catchment scale variables summarising its water balance can be of great use in identifying problems with model parameterisation, even for distributed models. Evaluation using spatially distributed data yielded less useful information on model performance, owing to the relative sparseness of data points, and problems of mismatch of scale between the measurement and the model grid.</p> <p style='line-height: 20px;'><b>Keywords: </b>physically-based distributed model, SHETRAN, parameterisation, Mediterranean mountain catchment, internal evaluation, multi-respons

    Seasonal differences in runoff between forested and non-forested catchments: a case study in the Spanish Pyrenees

    Get PDF
    [EN] The hydrological response of two neighbouring catchments in the central Spanish Pyrenees with similar lithology and topography but different land use was compared. One catchment (2.84 km 2 ) was extensively cultivated in the past, and the other (0.92 km 2 ) is covered by dense natural forest. Differences in runoff were strongly related to catchment wetness conditions and showed a marked seasonality: under dry conditions runoff tended to be greater in the former agricultural catchment, whereas under wet conditions it tended to be greater in the forested catchment. One explanation for this switching behaviour could be an increase in the hydrological connectivity within the slopes of the forested catchment as it becomes wetter, which favours the release of large amounts of subsurface flow. Differences in land use (vegetation and soil properties) dictate the contrasting dominant runoff generation processes operating in each catchment, and consequently the differences between their hydrological responses. Key words water yield; seasonal controls; hydrograph characteristics; forestSupport for this research was provided by the following projects: PROBASE (CGL2006-11619/HID), RespHiMed (CGL2010-18374) and MONTES (CSD2008-00040), financed by the Spanish Commission of Science and Technology; ACQWA (FP7-ENV-2007-1), financed by the European Commission; and PI032/08, financed by the AragĂłn Regional Government. The authors also acknowledge support from RESEL (the Spanish Ministry of the Environment). N. Lana-Renault was the recipient of a research contract (Juan de la Cierva programme) and J. Latron the recipient of a research contract (RamĂłn y Cajal programme), both funded by the Spanish Ministry of Sciences and Innovation.Peer Reviewe

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version

    Comparing hydrological responses across catchments using a new soil water content metric

    Get PDF
    Soil water content (SWC) is a fundamental variable involved in several hydrological processes governing catchment functioning. Comparative analysis of hydrological processes in different catchments based on SWC data is therefore beneficial to infer driving factors of catchment response. Here, we explored the use of high-temporal resolution SWC data in three forested catchments (2.4–60 ha) in different European climates to characterize hydrological responses during wet and dry conditions. The investigated systems include Ressi, Italy, with a humid temperate climate, Weierbach, Luxembourg, with a semi-oceanic climate, and Can Vila, Spain, with a Mediterranean climate. We introduced a new SWC metric defined as the difference between seasonal mean SWC at a relatively shallow and a deep soil layer. The difference is classified in three distinct states: similar SWC between the two layers, higher SWC in the deeper layer, and higher SWC in the shallow layer. In the most humid site, Ressi, we frequently found similar SWC at the two soil depths which was associated with high runoff ratios. Despite similar precipitation amounts in Can Vila and Weierbach, SWC patterns were very different in both catchments. In Weierbach, SWC was similar across the entire soil profile during wet conditions, whereas evaporation of shallow water resulted in higher SWC in the deep soil layer during dry conditions. This led to high runoff ratios during wet conditions and low runoff ratios during dry conditions. In Can Vila, SWC was consistently higher in the deeper layer compared to the shallow layer, irrespective of the season, suggesting an important role of hydraulic redistribution and vertical water movement in this site. Our approach provides an easy and useful method to assess differences in hydrological behaviour solely based on SWC data. As similar datasets are increasingly collected and available, this opens the possibility for further analyses and comparisons in sites around the globe with contrasted physiographic and climate characteristics.C. Segura acknowledges a Fulbright Fellowship that supported her stay at the University of Florence, Italy and the National Science Foundation Award No. 1943574. The Weierbach datasets have been collected in the framework of the Doctoral Training Unit HYDRO-CSI (Innovative methodologies for unravelling hydrological, chemical, and biological interactions across multiple scales), funded by the National Research Fund of Luxembourg (grant PRIDE15/10623093). Data collection in Ressi catchment was supported by the projects “Ecohydrological Dynamics and Water Pathways in Forested Catchments” (Bando Starting Grants 2015, Fondazione Cassa di Risparmio di Padova e Rovigo), the project “SILVA-Water fluxes between soil, vegetation and atmosphere: a comparative analysis in two Italian forested catchments” (funded by Premio Florisa Melone 2018, assigned by the Italian Hydrological Society), the Italian MIUR Project (PRIN 2017) “WATer mixing in the critical ZONe: observations and predictions under environmental changes-WATZON” (code: 2017SL7ABC), and the RETURN Extended Partnership, receiving funding from the European Union Next-GenerationEU (National Recovery and Resilience Plan – NRRP, Mission 4, Component 2, Investment 1.3 – D.D. 1243 2/8/2022, PE0000005). J. Latron and L. Pfister contributions have been supported by the RHYSOTTO (PID2019-106583RB-I00) and WARMed (PID2022-141868NB-I00) projects, both funded by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Inovación, Agencia Estatal de Investigación). J. Latron and L. Pfister also acknowledge the collaboration of Gisel Bertran and Elisenda Sánchez during field work and data collection. The results of this study were discussed within the COST Action: “WATSON” CA19120. We also thank the constructive reviews from Nitin Singh and an anonymous reviewer.Peer reviewe

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the Aragón Government and the European Social Fund. José Andrés López-Tarazón acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi Cerdà thank the funding of the OCDE TAD/CRP JA00088807. José Martínez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y León Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)
    • …
    corecore