1,009 research outputs found

    Gonadotropin Concentrations, Follicular Development, and Luteal Function in Pituitary Stalk-transfected Ewes Treated with Bovine Follicular Fluid

    Get PDF
    Two experiments, each arranged as a 2 x 2 factorial, were conducted in ewes to examine direct effects of bovine follicular fluid (bFF) on follicular development and luteal function and to further characterize follicular development and luteal function after pituitary stalk transection (SS). In Exp. 1, ewes were sham-operated or SS on d 6 of an estrous cycle and received 5 ml of saline or bFF three times daily on d 5 through 11 of the same cycle. In Exp. 2, all ewes were SS on d 6 of an estrous cycle and treated with saline or bFF three times daily on d 5 through 11 and with ovine FSH (60 micrograms; NIADDK-oFSH-16) or saline (1.2 ml) from d 7 to 11. In Exp. 2, ewes were ovariectomized on d 11 to assess effects of treatments on follicular development and luteal function. In both experiments, concentrations (ng/ml) of FSH on d 7 were suppressed (P less than or equal to .005) by bFF compared with saline (.50 +/- .17 vs 1.63 +/- .15) and remained suppressed (P less than or equal to .005) through d 11 (.46 +/- .12 vs 1.54 +/- .12). Replacement therapy (oFSH) restored concentrations of FSH. Concentrations of LH were not affected by bFF but were elevated (P less than or equal to .05) 1 d after SS (d 7; .88 +/- .09 vs .56 +/- .09) and remained elevated (P less than or equal to .05; 1.31 +/- .20 vs .65 +/- .11) from d 6 through 11. Concentrations of progesterone were unaffected by SS

    Redshift-Space Enhancement of Line-of-Sight Baryon Acoustic Oscillations in the SDSS Main-Galaxy Sample

    Full text link
    We show that redshift-space distortions of galaxy correlations have a strong effect on correlation functions with distinct, localized features, like the signature of the baryon acoustic oscillations (BAO). Near the line of sight, the features become sharper as a result of redshift-space distortions. We demonstrate this effect by measuring the correlation function in Gaussian simulations and the Millennium Simulation. We also analyze the SDSS DR7 main-galaxy sample (MGS), splitting the sample into slices 2.5 degrees on the sky in various rotations. Measuring 2D correlation functions in each slice, we do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we localize it to (110 +/- 10) Mpc/h. Averaging only along the line of sight, we estimate its significance at a particular wavelet scale and location at 2.2 sigma. In a flat angular weighting in the (pi,r_p) coordinate system, the noise level is suppressed, pushing the bump's significance to 4 sigma. We estimate that there is about a 0.2% chance of getting such a signal anywhere in the vicinity of the BAO scale from a power spectrum lacking a BAO feature. However, these estimates of the significances make some use of idealized Gaussian simulations, and thus are likely a bit optimistic.Comment: 17 pages, 27 figures. Minor changes to match final version accepted to Ap

    Frequentist comparison of CMB local extrema statistics in the five-year WMAP data with two anisotropic cosmological models

    Get PDF
    We present local extrema studies of two models that introduce a preferred direction into the observed cosmic microwave background (CMB) temperature field. In particular, we make a frequentist comparison of the one- and two-point statistics for the dipole modulation and ACW models with data from the five-year Wilkinson Microwave Anisotropy Probe (WMAP). This analysis is motivated by previously revealed anomalies in the WMAP data, and particularly the difference in the statistical nature of the temperature anisotropies when analysed in hemispherical partitions. The analysis of the one-point statistics indicates that the previously determined hemispherical variance difficulties can be apparently overcome by a dipole modulation field, but new inconsistencies arise if the mean and the l-dependence of the statistics are considered. The two-point correlation functions of the local extrema, the temperature pair product and the point-point spatial pair-count, demonstrate that the impact of such a modulation is to over-`asymmetrise' the temperature field on smaller scales than the wave-length of the dipole or quadrupole, and this is disfavored by the observed data.The results from the ACW model predictions, however, are consistent with the standard isotropic hypothesis. The two-point analysis confirms that the impact of this type of violation of isotropy on the temperature extrema statistics is relatively weak. From this work, we conclude that a model with more spatial structure than the dipole modulated or rotational-invariance breaking models are required to fully explain the observed large-scale anomalies in the WMAP data.Comment: 10 pages, 4 figures, 3 tables, accepted for publication in MNRA

    Prediction of exercise capacity and training prescription from the 6-minute walk test and rating of perceived exertion

    Get PDF
    Walking tests, such as the 6-min walk test (6MWT), are popular methods of estimating peak oxygen uptake (VO(2)peak) in clinical populations. However, the strength of the distance vs. VO(2)peak relationship is not strong, and there are no equations for estimating ventilatory threshold (VT), which is important for training prescription and prognosis. Since the 6MWT is often limited by walking mechanics, prediction equations that include simple additional predictors, such as the terminal rating of perceived exertion (RPE), hold the potential for improving the prediction of VO(2)max and VT. Therefore, this study was designed to develop equations for predicting VO(2)peak and VT from performance during the 6MWT, on the basis of walking performance and terminal RPE. Clinically stable patients in a cardiac rehabilitation program (N = 63) performed the 6MWT according to the American Thoracic Society guidelines. At the end of each walk, the subject provided their terminal RPE on a 6–20 Borg scale. Each patient also performed a maximal incremental treadmill test with respiratory gas exchange to measure VO(2)peak and VT. There was a good correlation between VO(2)peak and 6MWT distance (r = 0.80) which was improved by adding the terminal RPE in a multiple regression formula (6MWT + RPE, R(2) = 0.71, standard error of estimate, SEE = 1.3 Metabolic Equivalents (METs). The VT was also well correlated with walking performance, 6MWT distance (r = 0.80), and was improved by the addition of terminal RPE (6MWT + RPE, R(2) = 0.69, SEE = 0.95 METs). The addition of terminal RPE to 6MWT distance improved the prediction of maximal METs and METs at VT, which may have practical applications for exercise prescription

    Cosmological Parameters Degeneracies and Non-Gaussian Halo Bias

    Get PDF
    We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard LCDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model and forecasts from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among fNLf_{\rm NL} and the running of the spectral index αs\alpha_s, the dark energy equation of state ww, the effective sound speed of dark energy perturbations cs2c^2_s, the total mass of massive neutrinos Mν=mνM_\nu=\sum m_\nu, and the number of extra relativistic degrees of freedom NνrelN_\nu^{rel}. Neglecting CMB information on fNLf_{\rm NL} and scales k>0.03hk > 0.03 h/Mpc, we find that, if NνrelN_\nu^{\rm rel} is assumed to be known, the uncertainty on cosmological parameters increases the error on fNLf_{\rm NL} by 10 to 30% depending on the survey. Thus the fNLf_{\rm NL} constraint is remarkable robust to cosmological model uncertainties. On the other hand, if NνrelN_\nu^{\rm rel} is simultaneously constrained from the data, the fNLf_{\rm NL} error increases by 80\sim 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1--σ\sigma error of the order ΔfNL25\Delta f_{\rm NL} \sim 2-5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.Comment: 17 pages, 1 figure added, typos corrected, comments added, matches the published versio

    Foreground removal from WMAP 7yr polarization maps using an MLP neural network

    Get PDF
    One of the fundamental problems in extracting the cosmic microwave background signal (CMB) from millimeter/submillimeter observations is the pollution by emission from the Milky Way: synchrotron, free-free, and thermal dust emission. To extract the fundamental cosmological parameters from CMB signal, it is mandatory to minimize this pollution since it will create systematic errors in the CMB power spectra. In previous investigations, it has been demonstrated that the neural network method provide high quality CMB maps from temperature data. Here the analysis is extended to polarization maps. As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analysed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data is included. Within this framework it is demonstrated that the network can extract the CMB polarization signal with no sign of pollution by the polarized foregrounds. The errors in the derived polarization power spectra are improved compared to the errors derived by the WMAP Team.Comment: Accepted for publication in Astrophysics & Space Scienc

    Groundwater Development in Arid Basins

    Get PDF
    Summary: Groundwater development frequently provides a means whereby tremendous new economic opportunities are opened up. If supplies are overdrawn (mined) the ensuing regional economy may be able to affort replacements from more costly sources. In the United States the Salt River Valley of Arizona and the valleys of California provide examples. Two cases are treated in this paper, Israel and West Pakistan. In Israel, besides furnishing more than half of the basic source of water suppply, groundwater development provides opportunity for both quantity and quality management, which makes possible use of surface supplies and reclaimed sewage as firm rather than marginal sources. This development will permit the total water resources of this small country, where agricultural production ranks among the world\u27s most efficient, to be utilized effectively down to almost the last drop by the mid 1970\u27s. Israel must then look to desalted water from the sea for further expansion of its overall water supply. In West Pakistan a combination of level terrain and leaky canals since about 1890 led to threatened waterlogging and salinity of more than 25 million acreas of irrigated land, even though supplies were less than half adequate for good productivity. By the 1950\u27s low yields and increasing population threatened starvation. However, initiation of groundwater development, first by the government and later by pricate entreprise, has, since 1960, let to construction of 3,500 governmental tube wells of about 3 cfs capacity and 30,000 private tube wells of slightly less than 1 cfs capacity. Results have been dramatic. Agricultural production and use of fertilizer are rapidly increasing, and opening of well development of pricate enterprise is providing the irrigator with benefits of free competition for his water custom which he did not previously enjoy. Ultimately, besides providing full supplies for an estimated 26 to 30 million acrea, drainage and salinity problems will be mitigated if about 50 million acre-feet are pumped each year from groundwater including about 28 million acre-feet to be mined from a reserve of about 1,900 million acre-feet. With some difficult surface storage development due to terrain, mining may eventually be reduced. Through an eventual technological solution for the continuing overdraft is not now in sight, perhaps an economy may be built which can affort such a solution when the time comes

    The History of Galaxy Formation in Groups: An Observational Perspective

    Get PDF
    We present a pedagogical review on the formation and evolution of galaxies in groups, utilizing observational information from the Local Group to galaxies at z~6. The majority of galaxies in the nearby universe are found in groups, and galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby groups (~1 Mpc). This suggests that the group environment may play a role in the formation of most galaxies. The Local Group, and other nearby groups, display a diversity in star formation and morphological properties that puts limits on how, and when, galaxies in groups formed. Effects that depend on an intragroup medium, such as ram-pressure and strangulation, are likely not major mechanisms driving group galaxy evolution. Simple dynamical friction arguments however show that galaxy mergers should be common, and a dominant process for driving evolution. While mergers between L_* galaxies are observed to be rare at z < 1, they are much more common at earlier times. This is due to the increased density of the universe, and to the fact that high mass galaxies are highly clustered on the scale of groups. We furthermore discus why the local number density environment of galaxies strongly correlates with galaxy properties, and why the group environment may be the preferred method for establishing the relationship between properties of galaxies and their local density.Comment: Invited review, 16 pages, to be published in ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov

    The Rise and Fall of Galaxy Activity in Dark Matter Haloes

    Full text link
    We use a SDSS galaxy group catalogue to study the dependence of galaxy activity on stellar mass, halo mass, and group hierarchy (centrals vs. satellites). We split our galaxy sample in star-forming galaxies, galaxies with optical AGN activity and radio sources. We find a smooth transition in halo mass as the activity of central galaxies changes from star formation to optical AGN activity to radio emission. Star-forming centrals preferentially reside in haloes with M<10^{12} Msun, central galaxies with optical-AGN activity typically inhabit haloes with M \sim 10^{13} Msun, and centrals emitting in the radio mainly reside in haloes more massive than 10^{14} Msun. Although this seems to suggest that the environment (halo mass) determines the type of activity of its central galaxy, we find a similar trend with stellar mass: central star formers typically have stellar masses below 10^{10} Msun, while optical-AGN hosts and central radio sources have characteristic stellar masses of 10^{10.8} Msun and 10^{11.6} Msun, respectively. Since more massive haloes typically host more massive centrals, it is unclear whether the activity of a central galaxy is causally connected to its stellar mass or to its halo mass. In general, satellite galaxies have their activity suppressed wrt central galaxies of the same stellar mass. At fixed stellar mass, we find that the activity of satellite galaxies depends only weakly on halo mass. In fact, for satellite galaxies the dependence of galaxy activity on halo mass is more than four times weaker than the dependence on stellar mass. As we discuss, all these results are consistent with a picture in which low mass haloes accrete cold gas, while massive haloes have coronae of hot gas that promote radio activity of their central galaxies. [Abridged]Comment: 17 pages, 13 figures. Submitted for publication in MNRA
    corecore