76 research outputs found

    Dinosaur tracks from the Kilmaluag Formation (Bathonian, Middle Jurassic) of Score Bay, Isle of Skye, Scotland, UK

    Get PDF
    Tracks of a juvenile theropod dinosaur with footprint lengths of between 2 and 9 cm as well as adults of the same ichnospecies with footprints of about 15–25 cm in length were found in the Bathonian (Middle Jurassic) Kilmaluag Formation of Score Bay, northwestern Trotternish Peninsula, Isle of Skye, Scotland, UK. Two footprint sizes occur together on the same bedding plane in the central portion of Score Bay, both in situ and on loose blocks. Another horizon containing footprints above this was also identified. The footprints from the lowest horizon were produced in a desiccated silty mud that was covered with sand. A close association of both adults and juveniles with similar travel direction indicated by the footprints may suggest post-hatching care in theropod dinosaurs. Other footprints, produced on a rippled sandy substrate, have been found on the slightly higher bedding plane at this locality. Loose blocks found 130 m to the northeast in the central part of Score Bay have not been correlated with any in situ sediments, but were preserved in a similar manner to those from the higher bedding plane. These tracks represent the youngest dinosaur remains yet found in Scotland

    The VIMOS VLT Deep Survey - Evolution of the luminosity functions by galaxy type up to z=1.5 from first epoch data

    Get PDF
    From the first epoch observations of the VVDS up to z=1.5 we have derived luminosity functions (LF) of different spectral type galaxies. The VVDS data, covering ~70% of the life of the Universe, allow for the first time to study from the same sample and with good statistical accuracy the evolution of the LFs by galaxy type in several rest frame bands from a purely magnitude selected sample. The magnitude limit of the VVDS allows the determination of the faint end slope of the LF with unprecedented accuracy. Galaxies have been classified in four spectral classes, using their colours and redshift, and LFs have been derived in the U, B, V, R and I rest frame bands from z=0.05 to z=1.5. We find a significant steepening of the LF going from early to late types. The M* parameter is significantly fainter for late type galaxies and this difference increases in the redder bands. Within each of the galaxy spectral types we find a brightening of M* with increasing redshift, ranging from =< 0.5 mag for early type galaxies to ~1 mag for the latest type galaxies, while the slope of the LF of each spectral type is consistent with being constant with redshift. The LF of early type galaxies is consistent with passive evolution up to z~1.1, while the number of bright early type galaxies has decreased by ~40% from z~0.3 to z~1.1. We also find a strong evolution in the normalization of the LF of latest type galaxies, with an increase of more than a factor 2 from z~0.3 to z~1.3: the density of bright late type galaxies in the same redshift range increases of a factor ~6.6. These results indicate a strong type-dependent evolution and identifies the latest spectral types as responsible for most of the evolution of the UV-optical luminosity function out to z=1.5.Comment: 18 pages with encapsulated figures, revised version after referee's comments, accepted for publication in A&

    The evolution of the luminosity functions in the FORS Deep Field from low to high redshift: I. The blue bands

    Full text link
    We use the very deep and homogeneous I-band selected dataset of the FORS Deep Field (FDF) to trace the evolution of the luminosity function over the redshift range 0.5 < z < 5.0. We show that the FDF I-band selection down to I(AB)=26.8 misses of the order of 10 % of the galaxies that would be detected in a K-band selected survey with magnitude limit K(AB)=26.3 (like FIRES). Photometric redshifts for 5558 galaxies are estimated based on the photometry in 9 filters (U, B, Gunn g, R, I, SDSS z, J, K and a special filter centered at 834 nm). A comparison with 362 spectroscopic redshifts shows that the achieved accuracy of the photometric redshifts is (Delta z / (z_spec+1)) < 0.03 with only ~ 1 % outliers. This allows us to derive luminosity functions with a reliability similar to spectroscopic surveys. In addition, the luminosity functions can be traced to objects of lower luminosity which generally are not accessible to spectroscopy. We investigate the evolution of the luminosity functions evaluated in the restframe UV (1500 Angstroem and 2800 Angstroem), u', B, and g' bands. Comparison with results from the literature shows the reliability of the derived luminosity functions. Out to redshifts of z ~ 2.5 the data are consistent with a slope of the luminosity function approximately constant with redshift, at a value of -1.07 +- 0.04 in the UV (1500 Angstroem, 2800 Angstroem) as well as u', and -1.25 +- 0.03 in the blue (g', B). We do not see evidence for a very steep slope (alpha < -1.6) in the UV at z ~ 3.0 and z ~ 4.0 favoured by other authors. There may be a tendency for the faint-end slope to become shallower with increasing redshift but the effect is marginal. We find a brightening of M_star and a decrease of Phi_star with redshift for all analyzed wavelengths. [abridged]Comment: 30 pages, re-submitted to A&A after referee comments have been taken into account, full-resolution version available at http://www.usm.uni-muenchen.de/people/gabasch/publications/gabasch_lfblue.p

    The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    Get PDF
    We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 \pm 8 Mpc/h at z~0.2, 70 \pm 5 Mpc/h at z~0.4, 81 \pm 5 Mpc/h at z~0.6, and 75 \pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.Comment: 21 pages, 16 figures, accepted for publication in MNRA

    Three-dimensional Topology-Independent Methods to Look for Global Topology

    Get PDF
    The space-like hypersurface of the Universe at the present cosmological time is a three-dimensional manifold. A non-trivial global topology of this space-like hypersurface would imply that the apparently observable universe (the sphere of particle horizon radius) could contain several images of the single, physical Universe. Recent three-dimensional techniques for constraining and/or detecting this topology are reviewed. Initial applications of these techniques using X-ray bright clusters of galaxies and quasars imply (weak) candidates for a non-trivial topology.Comment: minor revision; 7 pages, 1 figure, accepted by Classical and Quantum Gravit

    Can the Universe Create Itself?

    Full text link
    The question of first-cause has troubled philosophers and cosmologists alike. Now that it is apparent that our universe began in a Big Bang explosion, the question of what happened before the Big Bang arises. Inflation seems like a very promising answer, but as Borde and Vilenkin have shown, the inflationary state preceding the Big Bang must have had a beginning also. Ultimately, the difficult question seems to be how to make something out of nothing. This paper explores the idea that this is the wrong question --- that that is not how the Universe got here. Instead, we explore the idea of whether there is anything in the laws of physics that would prevent the Universe from creating itself. Because spacetimes can be curved and multiply connected, general relativity allows for the possibility of closed timelike curves (CTCs). Thus, tracing backwards in time through the original inflationary state we may eventually encounter a region of CTCs giving no first-cause. This region of CTCs, may well be over by now (being bounded toward the future by a Cauchy horizon). We illustrate that such models --- with CTCs --- are not necessarily inconsistent by demonstrating self-consistent vacuums for Misner space and a multiply connected de Sitter space in which the renormalized energy-momentum tensor does not diverge as one approaches the Cauchy horizon and solves Einstein's equations. We show such a Universe can be classically stable and self-consistent if and only if the potentials are retarded, giving a natural explanation of the arrow of time. Some specific scenarios (out of many possible ones) for this type of model are described. For example: an inflationary universe gives rise to baby universes, one of which turns out to be itself. Interestingly, the laws of physics may allow the Universe to be its own mother.Comment: 48 pages, 8 figure

    Spherically Symmetric Non Linear Structures

    Full text link
    We present an analytical method to extract observational predictions about non linear evolution of perturbations in a Tolman Universe. We assume no a priori profile for them. We solve perturbatively a Hamilton - Jacobi equation for a timelike geodesic and obtain the null one as a limiting case in two situations: for an observer located in the center of symmetry and for a non - centered one. In the first case we find expressions to evaluate the density contrast and the number count and luminosity distance vs redshift relationships up to second order in the perturbations. In the second situation we calculate the CMBR anisotropies at large angular scales produced by the density contrast and by the asymmetry of the observer's location, up to first order in the perturbations. We develope our argument in such a way that the formulae are valid for any shape of the primordial spectrum.Comment: 27 pages, uses RevTex. Modified in response to referee's Comments (submitted to PRD

    A small non-vanishing cosmological constant from vacuum energy: physically and observationally desirable

    Get PDF
    Increasing improvements in the independent determinations of the Hubble constant and the age of the universe now seem to indicate that we need a small non-vanishing cosmological constant to make the two independent observations consistent with each other. The cosmological constant can be physically interpreted as due to the vacuum energy of quantized fields. To make the cosmological observations consistent with each other we would need a vacuum energy density, ρv(103eV)4 \rho_v \sim (10^{-3} eV)^4 today ( in the cosmological units =c=k=1 \hbar=c=k=1 ). It is argued in this article that such a vacuum energy density is natural in the context of phase transitions linked to massive neutrinos. In fact, the neutrino masses required to provide the right vacuum energy scale to remove the age Vs Hubble constant discrepancy are consistent with those required to solve the solar neutrino problem by the MSW mechanism.Comment: 25 pages, latex, revised version to appear in Phys. Rev. D52 (1995): contains an expanded and clarified discussion of the particle physics model and connected issue

    The Large Scale Structure in the Universe: From Power-Laws to Acoustic Peaks

    Full text link
    The most popular tools for analysing the large scale distribution of galaxies are second-order spatial statistics such as the two-point correlation function or its Fourier transform, the power spectrum. In this review, we explain how our knowledge of cosmic structures, encapsulated by these statistical descriptors, has evolved since their first use when applied on the early galaxy catalogues to the present generation of wide and deep redshift surveys, incorporating the most challenging discovery in the study of the galaxy distribution: the detection of Baryon Acoustic Oscillations.Comment: 20 pages, 12 figures, to appear in "Data Analysis in Cosmology", Lecture Notes in Physics, 2008, eds. V. J. Martinez, E. Saar, E. Martinez-Gonzalez, and M.J. Pons-Borderia, Springer-Verla

    Galaxy luminosity function per morphological type up to z=1.2

    Get PDF
    We have computed the evolution of the rest-frame B-band luminosity function (LF) for bulge and disk-dominated galaxies since z=1.2. We use a sample of 605 spectroscopic redshifts with I_{AB}<24 in the Chandra Deep Field South from the VIMOS-VLT Deep Survey, 3555 galaxies with photometric redshifts from the COMBO-17 multi-color data, coupled with multi-color HST/ACS images from the Great Observatories Origin Deep Survey. We split the sample in bulge- and disk-dominated populations on the basis of asymmetry and concentration parameters measured in the rest-frame B-band. We find that at z=0.4-0.8, the LF slope is significantly steeper for the disk-dominated population (\alpha=-1.19 \pm 0.07) compared to the bulge-dominated population (\alpha=-0.53 \pm 0.13). The LF of the bulge-dominated population is composed of two distinct populations separated in rest-frame color: 68% of red (B-I)_{AB}>0.9 and bright galaxies showing a strongly decreasing LF slope \alpha=+0.55 \pm 0.21, and 32% of blue (B-I)_{AB}<0.9 and more compact galaxies which populate the LF faint-end. We observe that red bulge-dominated galaxies are already well in place at z~1, but the volume density of this population is increasing by a factor 2.7 between z~1 and z~0.6. It may be related to the building-up of massive elliptical galaxies in the hierarchical scenario. In addition, we observe that the blue bulge-dominated population is dimming by 0.7 magnitude between z~1 and z~0.6. Galaxies in this faint and more compact population could possibly be the progenitors of the local dwarf spheroidal galaxies.Comment: 9 pages, 4 figures, 2 tables, accepted for publication in Astronomy and Astrophysic
    corecore