32 research outputs found
The ANTARES Optical Beacon System
ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It
consists of a three dimensional array of photomultiplier tubes that can detect
the Cherenkov light induced by charged particles produced in the interactions
of neutrinos with the surrounding medium. High angular resolution can be
achieved, in particular when a muon is produced, provided that the Cherenkov
photons are detected with sufficient timing precision. Considerations of the
intrinsic time uncertainties stemming from the transit time spread in the
photomultiplier tubes and the mechanism of transmission of light in sea water
lead to the conclusion that a relative time accuracy of the order of 0.5 ns is
desirable. Accordingly, different time calibration systems have been developed
for the ANTARES telescope. In this article, a system based on Optical Beacons,
a set of external and well-controlled pulsed light sources located throughout
the detector, is described. This calibration system takes into account the
optical properties of sea water, which is used as the detection volume of the
ANTARES telescope. The design, tests, construction and first results of the two
types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
Sedimentation and Fouling of Optical Surfaces at the ANTARES Site
ANTARES is a project leading towards the construction and deployment of a
neutrino telescope in the deep Mediterranean Sea. The telescope will use an
array of photomultiplier tubes to detect the Cherenkov light emitted by muons
resulting from the interaction with matter of high energy neutrinos. In the
vicinity of the deployment site the ANTARES collaboration has performed a
series of in-situ measurements to study the change in light transmission
through glass surfaces during immersions of several months. The average loss of
light transmission is estimated to be only ~2% at the equator of a glass sphere
one year after deployment. It decreases with increasing zenith angle, and tends
to saturate with time. The transmission loss, therefore, is expected to remain
small for the several year lifetime of the ANTARES detector whose optical
modules are oriented downwards. The measurements were complemented by the
analysis of the ^{210}Pb activity profile in sediment cores and the study of
biofouling on glass plates. Despite a significant sedimentation rate at the
site, in the 0.02 - 0.05 cm.yr^{-1} range, the sediments adhere loosely to the
glass surfaces and can be washed off by water currents. Further, fouling by
deposits of light-absorbing particulates is only significant for surfaces
facing upwards.Comment: 18 pages, 14 figures (pdf), submitted to Astroparticle Physic
Dark Matter Searches with the ANTARES Neutrino Telescope
[EN] The MOSCAB experiment (Materia OSCura A Bolle) uses the Geyser technique for dark matter search. The results of the first 0.5 kg mass prototype detector using superheated C3F8 liquid were very encouraging, achieving a 5 keV nuclear recoil threshold with high insensitivity to gamma radiation. Additionally, the technique seems to be easily scalable to higher masses for both in terms of complexity and costs, resulting in a very competitive technique for direct dark matter search, especially for the spin dependent case. Here, we report as well in the construction and commissioning of the big detector of 40 kg at the Milano-Bicocca University. The detector, the calibration tests and the evaluation of the background will be presented. Once demonstrated the functionality of the detector, it will be operated at the Gran Sasso National Laboratory in 2015.We acknowledge the financial support of the Spanish Ministerio de Ciencia e InnovaciĂłn (MICINN) and Ministerio de EconomĂa y Competitividad (MINECO), Grants FPA2012-37528-C02-02, and Consolider MultiDark CSD2009-00064, and of the Generalitat Valenciana, Grants ACOMP/2014/153 and PrometeoII/2014/079.Ardid RamĂrez, M. (2016). Dark Matter Searches with the ANTARES Neutrino Telescope. Nuclear and Particle Physics Proceedings. 273:378-382. https://doi.org/10.1016/j.nuclphysbps.2015.09.054S37838227
First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope
In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system. as well as the calibration devices of the detector. The in situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than 0.3 degrees can be realistically achieved
The ANTARES Optical Module
The ANTARES collaboration is building a deep sea neutrino telescope in the
Mediterranean Sea. This detector will cover a sensitive area of typically 0.1
km-squared and will be equipped with about 1000 optical modules. Each of these
optical modules consists of a large area photomultiplier and its associated
electronics housed in a pressure resistant glass sphere. The design of the
ANTARES optical module, which is a key element of the detector, has been
finalized following extensive R & D studies and is reviewed here in detail.Comment: 26 pages, 15 figures, to be published in NI
The data acquisition system for the ANTARES neutrino telescope
The ANTARES neutrino telescope is being constructed in the Mediterranean Sea.
It consists of a large three-dimensional array of photo-multiplier tubes. The
data acquisition system of the detector takes care of the digitisation of the
photo-multiplier tube signals, data transport, data filtering, and data
storage. The detector is operated using a control program interfaced with all
elements. The design and the implementation of the data acquisition system are
described.Comment: 20 pages, 6 figures, accepted for publication in Nucl. Instrum. Meth.
Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope
The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES
ANTARES: the first undersea neutrino telescope
The ANTARES Neutrino Telescope was completed in May 2008 and is the first
operational Neutrino Telescope in the Mediterranean Sea. The main purpose of
the detector is to perform neutrino astronomy and the apparatus also offers
facilities for marine and Earth sciences. This paper describes the design, the
construction and the installation of the telescope in the deep sea, offshore
from Toulon in France. An illustration of the detector performance is given