1,468 research outputs found

    Cognitive demands of face monitoring: Evidence for visuospatial overload

    Get PDF
    Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information

    Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    Get PDF
    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system

    Atmospheric Circulation of Eccentric Hot Neptune GJ436b

    Full text link
    GJ436b is a unique member of the transiting extrasolar planet population being one of the smallest and least irradiated and possessing an eccentric orbit. Because of its size, mass and density, GJ436b could plausibly have an atmospheric metallicity similar to Neptune (20-60 times solar abundances), which makes it an ideal target to study the effects of atmospheric metallicity on dynamics and radiative transfer in an extrasolar planetary atmosphere. We present three-dimensional atmospheric circulation models that include realistic non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show little day/night temperature variation and strong high-latitude jets. In contrast, higher metallicity models (30 and 50 times solar) exhibit day/night temperature variations and a strong equatorial jet. Spectra and light curves produced from these simulations show strong orbital phase dependencies in the 50 times solar case and negligible variations with orbital phase in the 1 times solar case. Comparisons between the predicted planet/star flux ratio from these models and current secondary eclipse measurements support a high metallicity atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b, our models serve to illuminate how metallicity influences the atmospheric circulation for a broad range of warm extrasolar planets.Comment: 25 pages, 13 figure

    Paper and electronic versions of HM-PRO, a novel patient-reported outcome measure for hematology: an equivalence study.

    Get PDF
    © 2019 Goswami, Oliva, Ionova et al.Aim:To determine measurement equivalence of paper and electronic application of the hematologi-cal malignancy-patient-reported outcome (HM-PRO), a specific measure for the evaluation of patient-reported outcomes in HMs.Patients & methods:Following International Society of Pharmacoeconomicsand Outcomes Research ePRO Good Research Practice Task Force guidelines, a total of 193 adult patientswith different HMs were recruited into a multicenter prospective study. The paper and the electronic ver-sion of the instrument were completed in the outpatient clinics in a randomized crossover design with a30-min time interval to minimize the learning effect. Those who completed the paper version first, com-pleted the electronic version after 30 min and vice versa. Instrument version and order effects were testedon total score of the two parts of the HM-PRO (Part A: quality of life and Part B: signs & symptoms) in atwo-way ANOVA with patients as random effects. Intraclass correlation coefficients (95% CI) and Spear-man’s rank correlation coefficients were used to evaluate test–retest reliability and reproducibility. Theeffects of instrument version and order were tested on total score of the two parts of HM-PRO.Results:The questionnaire version and administration order effects were not significant at the 5% level. Therewere no interactions found between these two factors for HM-PRO (Part A [quality of life]; p=0.95); and(part B [signs and symptoms]; p=0.72]. Spearman’s rank correlation coefficients were greater than 0.9, andintraclass correlation coefficients ranged from 0.94 to 0.98; furthermore, the scores were not statisticallydifferent between the two versions, showing acceptable reliability indexes. Noteworthy, the differencebetween the completion time for both paper (mean=6:38 min) and electronic version (mean=7:29 min)was not statistically significant (n=100; p=0.11). Patients did not report any difficulty in completing theelectronic version during cognitive interviews and were able to understand and respond spontaneously.Conclusion:Measurement equivalence has been demonstrated for the paper and electronic applicationof the HM-PRO.Peer reviewe

    Creation and Reproduction of Model Cells with Semipermeable Membrane

    Full text link
    A high activity of reactions can be confined in a model cell with a semipermeable membrane in the Schl\"ogl model. It is interpreted as a model of primitive metabolism in a cell. We study two generalized models to understand the creation of primitive cell systems conceptually from the view point of the nonlinear-nonequilibrium physics. In the first model, a single-cell system with a highly active state confined by a semipermeable membrane is spontaneously created from an inactive homogeneous state by a stochastic jump process. In the second model, many cell structures are reproduced from a single cell, and a multicellular system is created.Comment: 11 pages, 7 figure

    Risk Prediction Scores for Postoperative Mortality After Esophagectomy: Validation of Different Models

    Get PDF
    Background: Different prediction models for operative mortality after esophagectomy have been developed. The aim of this study is to independently validate prediction models from Philadelphia, Rotterdam, Munich, and the ASA. Methods: The scores were validated using logistic regression models in two cohorts of patients undergoing esophagectomy for cancer from Switzerland (n = 170) and Australia (n = 176). Results: All scores except ASA were significantly higher in the Australian cohort. There was no significant difference in 30-day mortality or in-hospital death between groups. The Philadelphia and Rotterdam scores had a significant predictive value for 30-day mortality (p = 0.001) and in-hospital death (p = 0.003) in the pooled cohort, but only the Philadelphia score had a significant prediction value for 30-day mortality in both cohorts. Neither score showed any predictive value for in-hospital death in Australians but were highly significant in the Swiss cohort. ASA showed only a significant predictive value for 30-day mortality in the Swiss. For in-hospital death, ASA was a significant predictor in the pooled and Swiss cohorts. The Munich score did not have any significant predictive value whatsoever. Conclusion: None of the scores can be applied generally. A better overall predictive score or specific prediction scores for each country should be develope

    Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b

    Get PDF
    We present global, three-dimensional numerical simulations of HD 189733b and HD 209458b that couple the atmospheric dynamics to a realistic representation of non-gray cloud-free radiative transfer. The model, which we call the Substellar and Planetary Atmospheric Radiation and Circulation (SPARC) model, adopts the MITgcm for the dynamics and uses the radiative model of McKay, Marley, Fortney, and collaborators for the radiation. Like earlier work with simplified forcing, our simulations develop a broad eastward equatorial jet, mean westward flow at higher latitudes, and substantial flow over the poles at low pressure. For HD 189733b, our simulations without TiO and VO opacity can explain the broad features of the observed 8 and 24-micron light curves, including the modest day-night flux variation and the fact that the planet/star flux ratio peaks before the secondary eclipse. Our simulations also provide reasonable matches to the Spitzer secondary-eclipse depths at 4.5, 5.8, 8, 16, and 24 microns and the groundbased upper limit at 2.2 microns. However, we substantially underpredict the 3.6-micron secondary-eclipse depth, suggesting that our simulations are too cold in the 0.1-1 bar region. Predicted temporal variability in secondary-eclipse depths is ~1% at Spitzer bandpasses, consistent with recent observational upper limits at 8 microns. We also show that nonsynchronous rotation can significantly alter the jet structure. For HD 209458b, we include TiO and VO opacity; these simulations develop a hot (>2000 K) dayside stratosphere. Despite this stratosphere, we do not reproduce current Spitzer photometry of this planet. Light curves in Spitzer bandpasses show modest phase variation and satisfy the observational upper limit on day-night phase variation at 8 microns. (abridged)Comment: 20 pages (emulate-apj format), 21 figures, final version now published in ApJ. Includes expanded discussion of radiative-transfer methods and two new figure

    Brief report: how adolescents with ASD process social information in complex scenes. Combining evidence from eye movements and verbal descriptions

    Get PDF
    We investigated attention, encoding and processing of social aspects of complex photographic scenes. Twenty-four high-functioning adolescents (aged 11–16) with ASD and 24 typically developing matched control participants viewed and then described a series of scenes, each containing a person. Analyses of eye movements and verbal descriptions provided converging evidence that both groups displayed general interest in the person in each scene but the salience of the person was reduced for the ASD participants. Nevertheless, the verbal descriptions revealed that participants with ASD frequently processed the observed person’s emotion or mental state without prompting. They also often mentioned eye-gaze direction, and there was evidence from eye movements and verbal descriptions that gaze was followed accurately. The combination of evidence from eye movements and verbal descriptions provides a rich insight into the way stimuli are processed overall. The merits of using these methods within the same paradigm are discussed

    Towards generalized measures grasping CA dynamics

    Get PDF
    In this paper we conceive Lyapunov exponents, measuring the rate of separation between two initially close configurations, and Jacobians, expressing the sensitivity of a CA's transition function to its inputs, for cellular automata (CA) based upon irregular tessellations of the n-dimensional Euclidean space. Further, we establish a relationship between both that enables us to derive a mean-field approximation of the upper bound of an irregular CA's maximum Lyapunov exponent. The soundness and usability of these measures is illustrated for a family of 2-state irregular totalistic CA

    Three-dimensional atmospheric circulation of hot Jupiters on highly eccentric orbits

    Full text link
    Of the over 800 exoplanets detected to date, over half are on non-circular orbits, with eccentricities as high as 0.93. Such orbits lead to time-variable stellar heating, which has implications for the planet's atmospheric dynamical regime. However, little is known about this dynamical regime, and how it may influence observations. Therefore, we present a systematic study of hot Jupiters on highly eccentric orbits using the SPARC/MITgcm, a model which couples a three-dimensional general circulation model with a plane-parallel, two-stream, non-grey radiative transfer model. In our study, we vary the eccentricity and orbit-average stellar flux over a wide range. We demonstrate that the eccentric hot Jupiter regime is qualitatively similar to that of planets on circular orbits; the planets possess a superrotating equatorial jet and exhibit large day-night temperature variations. We show that these day-night heating variations induce momentum fluxes equatorward to maintain the superrotating jet throughout its orbit. As the eccentricity and/or stellar flux is increased, the superrotating jet strengthens and narrows, due to a smaller Rossby deformation radius. For a select number of model integrations, we generate full-orbit lightcurves and find that the timing of transit and secondary eclipse viewed from Earth with respect to periapse and apoapse can greatly affect what we see in infrared (IR) lightcurves; the peak in IR flux can lead or lag secondary eclipse depending on the geometry. For those planets that have large day-night temperature variations and rapid rotation rates, we find that the lightcurves exhibit "ringing" as the planet's hottest region rotates in and out of view from Earth. These results can be used to explain future observations of eccentric transiting exoplanets.Comment: 20 pages, 18 figures, 2 tables; Accepted to Ap
    • …
    corecore