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Abstract. In this paper we conceive Lyapunov exponents, measuring
the rate of separation between two initially close configurations, and
Jacobians, expressing the sensitivity of a CA’s transition function to its
inputs, for cellular automata (CA) based upon irregular tessellations of
the n-dimensional Euclidean space. Further, we establish a relationship
between both that enables us to derive a mean-field approximation of
the upper bound of an irregular CA’s maximum Lyapunov exponent.
The soundness and usability of these measures is illustrated for a family
of 2-state irregular totalistic CA.
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1 Introduction

Since their conceptualization by von Neumann [31] more than 60 years ago,
cellular automata (CA) have proven their usefulness in applied sciences as ade-
quate modeling tools in numerous scientific fields, such as epidemiology [21, 33],
demography [7, 8, 15], microbiology [23, 24], traffic engineering [9], hydrology and
geology [10, 12, 13, 22, 29], and numerous others [1, 18, 20, 25], while in exact sci-
ences much attention has been given to the complex spatio-temporal dynamics of
these intrinsically simple discrete dynamical systems [6, 26, 35–37]. In contrast to
continuous dynamical systems such as ordinary and partial differential equations
(ODE and PDE) that often allow to investigate the system’s stability properties
without having to solve the ODE or PDE, adequate conclusions about a CA’s
dynamical properties can mostly only be drawn from extensive computer simu-
lations [17, 35, 37], except for the class of additive CA [34]. This has motivated
several researchers to develop quantitative measures for discriminating between
the behavioral classes of CA distinguished by Wolfram [35], such as the Ham-
ming distance [6, 35], the Langton parameter [19], Lyapunov exponents [11, 27,
28], entropies and dimensions [16], and others [38], or by relying on mean-field
approximations [14].

Among these measures, Lyapunov exponents that were first introduced in
1D CA as the propagation speed of the damage front originating from an initial
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perturbation of the state of one of the cells [36], and later described rigorously
for 1D CA [26], are perhaps the most promising as indicated by their prevalent
use in papers on the phenomenology of CA [4–6, 11, 26–28]. Besides, their man-
ifold use for the characterization of continuous dynamical systems makes them
easily accessible for researchers that are not acquainted with the typicalities of
CA. Most frequently, Lyapunov exponents have been applied to characterize the
dynamics of 1D CA, since in this case, the damage front can propagate only to
the left or to the right of the initially perturbed cell, enabling a sound formula-
tion of right and left Lyapunov exponents [26]. Clearly, if higher-dimensional CA
are at stake, the usefulness of such directional Lyapunov exponents is strongly
hampered since the damage front in, for instance 2D CA, can propagate circu-
larly from an initial perturbation. For that reason, Bagnoli et al. [6] formulated
a non-directional Lyapunov exponent, which has been applied in combination
with a measure expressing the sensitivity of a CA’s transition function to its
inputs and based upon Boolean derivatives [30], to study 1D CA, as well as 2D
lattice gas automata [4, 5]. However, the latter measure is formulated in such a
way that its use is limited to CA based upon regular tessellations of R

n since it
assumes that the neighborhood structure is fixed, which is clearly not the case
if irregular tessellations are at stake. Hence, in order to grasp the dynamics of
CA based upon irregular tessellations, described rigorously in [2], as well as to
compare the dynamics of CA defined upon different tessellations of R

n, a gener-
alized definition of this measure should be formulated, and its relationship with
the non-directional Lyapunov exponents should be readdressed.

In Section 2 we outline the mathematical preliminaries that are necessary for
a proper understanding of Section 3 in which we conceive Lyapunov exponents
and Jacobians for irregular CA, and establish a measure grasping the CA’s sen-
sitivity to its input by relying on the latter. An exemplary simulation study of
2-state irregular totalistic CA concludes this paper.

2 Preliminaries

We state the definition of a cellular automaton on an arbitrary tessellation of a
n-dimensional Euclidean space, which constitutes an extension to the classical
CA paradigm that predominantly relies on regular tessellations of R

n ever since
von Neumann’s pioneering work [32].

Definition 1. (Cellular automaton)
A cellular automaton (CA) C can be represented as a sextuple

C = 〈T , S, s, s0, N, Φ〉 ,

where

(i) T is a countably infinite tessellation of a n-dimensional Euclidean space R
n,

consisting of cells ci, i ∈ N.
(ii) S is a finite set of k states, often S ⊂ N.
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(iii) The output function s : T × N → S yields the state value of cell ci at the
t-th discrete time step, i.e. s(ci, t).

(iv) The function s0 : T → S assigns to every cell ci an initial state, i.e.
s(ci, 0) = s0(ci).

(v) The neighborhood function N : T →
∞
⋃

p=1
T p maps every cell ci to a finite

sequence N(ci) =
(

cij

)|N(ci)|

j=1
, consisting of |N(ci)| distinct cells cij

.

(vi) Φ = (φi)i∈N
is a family of functions

φi : S|N(ci)| → S ,

each φi governing the dynamics of cell ci, i.e.

s(ci, t + 1) = φi

(

s̃(N(ci), t)
)

,

where s̃(N(ci), t) =
(

s(cij
, t)
)|N(ci)|

j=1
.

Although the complexity measures in the subsequent sections are derived for
any CA that obeys the former definition, in the simulation study presented in
the final section of this paper we focus on a family of totalistic CA, which we
define a follows.

Definition 2. (Totalistic cellular automaton)
A totalistic cellular automaton (CA) is a CA for which S ⊂ N, and for which
there exists a Ω : N → S such that

s(ci, t + 1) = φi

(

s̃(N(ci), t)
)

= Ω (σi) ,

where σi =
∑|N(ci)|

j=1 s(cij
, t).

For the sake of uniformity, we also set up an enumeration scheme for irregu-
lar totalistic CA in accordance with the enumeration developed for their regular
counterparts. Such a concise enumeration scheme allows to identify every φi that
can be formulated, given the number of possible states k, by means of an unique
number, commonly referred to as the rule number. To overcome the unbounded-
ness of σi that arises from allowing irregular tessellations of R

n, we introduce an
upper bound θ on σi such that Ω (σi) = Ω(θ) if σi ≥ θ. As such, the rule number
for a k-state, θ-sum irregular totalistic CA, denoted RT

θ , can then be found from
its base-k representation, containing µ = θ + 1 digits, zθ zθ−1 · · · z2 z1 z0 as

RT

θ = zθ kµ−1 + zθ−1 kµ−2 + . . . + z2 kµ−(µ−2) + z1 kµ−(µ−1) + z0 , (1)

where zf ∈ {0, 1, . . . , k − 1} represents the state value assigned to ci at the
t+1-th time step if σi = f . A total of kθ+1 different rules can be enumerated for
this family of irregular CA.
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3 Lyapunov exponents and Jacobians for irregular CA

3.1 Lyapunov exponents

Let s0 and s∗0 be two initial configurations of a 2-state CA for which S = {0, 1},
such that there is only one ci ∈ T for which s0(ci) 6= s∗0(ci), i.e. s∗0 constitutes
the smallest possible perturbation of s0. In what follows, we will refer to a cell
ci for which s(ci, t) 6= s∗(ci, t) as a defective or perturbed cell, or in short, as a
defect. Further, if we define ǫt as the number of defective cells at the t-th time
step, i.e.

ǫt = |{i | s(ci, t) 6= s∗(ci, t)}| , (2)

the quantity

λ = lim
t→∞

1

t
log

(

ǫt

ǫ0

)

, (3)

can be intuitively interpreted as a maximum Lyapunov exponent (MLE). Yet,
as indicated by Bagnoli et al. [6], we must take into account that a CA’s discrete
nature can cause defects to annihilate each other such that the quantity given by
the right-hand side of Eq. (3) approaches zero as t → ∞. Indeed, we observed this
tendency for the family of irregular CA covered in this paper. As suggested by
Bagnoli et al. [6], this artifact can be overcome by keeping track of the evolution
of all the defects that arise during the CA’s evolution, though they neglected to
include an algorithmic procedure that allows a proper evaluation of ǫt, and hence
of λ. For that reason, we provide a brief algorithmic procedure that enables the
calculation of the non-directional Lyapunov exponent of a CA (Algorithm 1).

It should be emphasized that, notwithstanding Eq. (3) demands to evaluate
λ as t → ∞, practical considerations make us to calculate the MLE for finite
T , and for finite tessellations T ∗ of a compact subset of R

n. The MLE has been
used before to classify both elementary and totalistic 1D cellular automata [6,
4], and is applied in our work to quantitatively describe the dynamics of 2-state,
5-sum irregular totalistic CA.

3.2 Jacobians

In order to express the sensitivity of a CA’s transition function φi to its input
s̃(N(ci), t), we can construct a Jacobian matrix J that has |T ∗| × |T ∗| entries:

Jij =







∂s(ci, t + 1)

∂s(cj , t)
, if cj ∈ N(ci) ,

0 , else ,

(4)

where ∂s(ci,t+1)
∂s(cj ,t) is the Boolean derivative, introduced in CA by Vichniac [30].

If altering s(cj , t) affects s(ci, t+1), this Boolean derivative equals one, whereas it
equals zero if such an alteration has no influence on the outcome of φi (s̃(N(ci), t)).
In contrast with the Jacobian of an elementary CA, the Jacobian of a CA based
upon irregular tessellations of R

n is not tridiagonal.
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Algorithm 1: Procedure for calculating the Lyapunov exponent of an
irregular CA

Create two initial configurations s(·, 0) and s∗(·, 0) such that ǫ0 = 1 ;
Calculate s(·, 1) and s∗(·, 1);
Determine the set D1 = {cj ∈ T ∗ | s∗(cj , 1) 6= s(cj , 1)};
For any cj ∈ D1, create a replica sj(·, 1) of s(·, 1), and perturb it such that
sj(cj , 1) = s∗(cj , 1);
Store these perturbed configurations, denoted as s∗j (·, 1), in a set A;
foreach time step t do

Calculate s(·, t + 1) and s∗j (·, t + 1);
Construct the multiset Et+1 = {(ck, m(ck)) | ck ∈ Dt+1} where
Dt+1 = {ck ∈ T ∗ | ∃ j : s∗j (ck, t + 1) 6= s(cj , t + 1)} and m(ck) gives the
number of replicas for which s∗j (ck, t + 1) 6= s(ck, t + 1);
Calculate ǫt+1;
Delete all the elements in A;
Construct for any cj ∈ Et+1 a replica sj(·, t + 1) of s(·, t + 1) and perturb it
in such a way that sj(cj , t + 1) = s∗(cj , t + 1);
Store these perturbed configurations, denoted as s∗j (·, t + 1), in the set A;

end

Calculate λ using Eq. (3);

Considering the variability of |N(ci)| in irregular CA, the average proportion
of cells cj in N(ci) that affects s(ci, t + 1) is given by

µ(t) =
1

|T ∗|

∑

ci

1

|N(ci)|

|N(ci)|
∑

j=1

Jiij
. (5)

Essentially, µ(t) expresses the sensitivity of a CA’s transition function to its
inputs. Its geometric mean µ̄ after a large number of time steps T is

µ̄ =

(

T
∏

t=1

µ(t)

)

1

T

. (6)

Understandably, higher values of µ̄ indicate a higher sensitivity of φi to its
input s̃(N(ci), t). Since the sensitivity is, within the outer summation of Eq. (5),
normalized for every ci with respect to |N(ci)|, it can be used to characterize
a CA regardless of the tessellation it is based upon. Hence, it is an appropriate
measure that can be exploited to compare the dynamics of CA that are based
upon the same transition function φi, but employ different tessellations of R

n.

3.3 Assessing an upper bound for Lyapunov exponents of irregular

CA

If we define the mean connectivity of T ∗ as

V =
1

|T ∗|

∑

ci

|N(ci)| , (7)
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and we indicate that the right-hand side Eq. (3) measures the average rate of
separation of two trajectories in phase space during one time step, we may argue
that V µ̄ represents a mean-field approximation for the maximum number of cells
cj with cj ∈ N(ci) that are affected by a defect in ci during one subsequent time
step. Accordingly, we can define a function that maps a given µ̄ to the upper
bound on the MLE (λm), i.e.

λm(µ̄) = log
(

V µ̄
)

(8)

yields a mean-field approximation of λm(µ̄) if both µ̄ and V are known. We refer
to the outcome of Eq. (8) as a mean-field approximation, since it is derived using
the mean connectivity V , hence, it makes of the discrepancies between N |(ci)|,
and it is only valid for t → ∞. Clearly, the function given by Eq. (8) reaches
its maximum for µ̄ = 1, which can occur if and only if all cells cj in N(ci) are
affected by a defect present in ci at the t-th time step during one subsequent time
step, and this holds for all ci in T ∗. Furthermore, since µ̄ is confined between
zero and one, it is clear that the upper bound for the MLE drops as φi becomes
less sensitive, expressed in terms of µ̄, to its input s̃(N(ci), t).

4 Phenomenological study of irregular totalistic CA

4.1 Conventions

Unless stated otherwise, the results presented in this section were obtained nu-
merically for T = 500, since by then both λ and µ̄ showed convergence in the
sense that an increase of T did not significantly alter the numerically assessed
values. Furthermore, periodic boundary conditions were applied in order to min-
imize boundary effects owing to the finiteness of T ∗ that, for the simulations
considered in this section, consisted of 675 irregular cells covering a unit square,
and were generated from random seeds in [0, 1]2 using a Voronoi tessellation. Us-
ing a Moore neighborhood, we obtained for this exemplary tessellation V = 6.97.
As an exemplary family of irregular totalistic CA we consider in the remainder of
this section 2-state, 5-sum irregular totalistic CA, for which S = {0, 1}. Hence,
in accordance with the enumeration scheme for irregular totalistic CA outlined
in Section 2 64 CA rules can be enumerated within this particular CA family.

4.2 Phenomenology

Figure 1 depicts the numerically evaluated MLE (λ) versus the geometric mean of
the proportion of non-zero entries in J (µ̄) of the 2-state, θ = 5 irregular totalistic
CA for which λ 6= −∞, together with the function λm(µ̄) = log(V µ̄), which,
according to Eq. (8), for the tessellation used in these simulations equals λm(µ̄) =
log(6.97 µ̄). Besides, it displays a logarithmic function λm(µ̄) = log(V ∗ µ̄) that
was fitted to (µ̄, λ) data pairs. Since the (µ̄, λ) enclosed within the demarcated
area depicted in Fig. 1 clearly deviate from the overall trend that can be inferred
from this figure, these data pairs were excluded from the fitting procedure. As
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such, we established V ∗ = 6.77 with a coefficient of determination R2 = 0.98.
The close agreement between the fitted function and the function given by Eq. (8)
indicates the validity of the latter.
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Fig. 1. Maximum Lyapunov exponent (λ) versus the geometric mean of the proportion
non-zero entries in J (µ̄) after 500 time steps, starting from a random initial condition.
Results and are only shown for those 2-state, θ = 5 irregular totalistic CA for which
λ 6= −∞.

Though Figure 1 confirms the validity of Eq. (8), it also shows that the
overall upper bound on the MLE, which is given by Eq. (8) for µ̄ = 1 such that
λm(µ̄) = log(6.97) ≈ 1.94, is not attained by any of the 64 considered 2-state,
5-sum irregular totalistic CA. More specifically, the highest MLE, equaling 1.83,
is found for rule 85, which, at the same time gives rise to the highest µ̄ that is
observed among the members of the CA family at stake, being µ̄ = 0.9. Hence,
given the fact that none of the CA contained in the considered CA family attains
the theoretical upper bound on µ̄, i.e. µ̄ = 1, meaning that there is no CA rule
for which Jij = 1 for all ci in T ∗ and cj ∈ N(ci), it is obvious that the overall
upper bound on the MLE cannot be reached by any of the investigated CA
rules. Yet, this finding gives inevitably gives rise to the question why none of
the CA evolves towards µ̄ = 1. This issue can be elucidated by reconsidering
the upper bound θ that was introduced in Section 2 to set up an enumeration
scheme for k-state irregular totalistic CA. This upper bound θ entails all σi for
which σi ≥ θ to be mapped to the same state, i.e. Ω (σi) = Ω(θ), and, as such,
makes the totalistic CA partially insensitive to its input. For instance, for the
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CA family at stake, we chose θ = 5, such that Ω (σi) = Ω(5) for all σi ≥ 5.
Yet, seen the exemplary tessellation has V ≈ 7 the existence of cells ci ∈ T ∗ for
which σi ≥ 5 is certainly not unlikely, though this cannot be discerned by the
CA since Ω (σi) = Ω(5). Clearly, the lower the upper bound θ is chosen with
respect to V , the larger becomes its influence on the CA’s dynamical properties.

Table 1, giving an overview of the λ and µ̄ that were assessed numerically for
the CA within the studied family of irregular totalistic CA, shows that 26 rules
give rise to λ = −∞ indicating that these CA evolve converging trajectories in
phase space. For comprehensiveness, we must underline that, in the framework of
this preliminary study, the values reported in Table 1 are obtained by considering
only one perturbed initial configuration s∗0 in order to curtail the amount of
computation time, whereas a profound study of a CA’s dynamical properties
should be based upon an ensemble of perturbed initial configurations [3].

Table 1. Dynamical properties of 2-state, θ = 5 irregular totalistic rules: sensitivity
to initial conditions, expressed in terms of λ, and the sensitivity of Ω to its input σi,
expressed by µ̄.

rule µ̄ λ rule µ̄ λ rule µ̄ λ rule µ̄ λ

0 0 −∞ 16 0 −∞ 32 0 −∞ 48 0.06 −∞
1 0.14 −∞ 17 0.44 1.13 33 0.32 0.71 49 0.06 −∞
2 0.56 1.14 18 0.66 1.56 34 0.52 1.23 50 0.02 −∞
3 0.02 −∞ 19 0.54 1.39 35 0.34 0.88 51 0.02 −∞
4 0.53 1.38 20 0.86 1.81 36 0.37 1.44 52 0.02 −∞
5 0.21 1.27 21 0.9 1.83 37 0.22 1.22 53 0.02 −∞
6 0.42 0.85 22 0.69 1.59 38 0.21 1.04 54 0.02 −∞
7 0.03 −∞ 23 0 −∞ 39 0.18 1.01 55 0.02 −∞
8 0.01 −∞ 24 0.02 0.9 40 0.19 1.24 56 0 −∞
9 0.61 1.47 25 0.47 1.18 41 0.2 0.89 57 0 −∞
10 0.8 1.67 26 0.57 1.3 42 0.21 0.71 58 0 −∞
11 0.03 1.39 27 0.49 1.22 43 0.2 0.79 59 0 −∞
12 0.4 1. 28 0.31 0.79 44 0.18 0.01 60 0 −∞
13 0.45 0.96 29 0.36 0.91 45 0.18 0.02 61 0 −∞
14 0.34 0.74 30 0.25 0.65 46 0.17 0.01 62 0 −∞
15 0.07 −∞ 31 0.08 −∞ 47 0.16 0 63 0 −∞

5 Discussion

Despite the validity of Eq. (8) and the usability of Lyapunov exponents and
Jacobian-based measures was demonstrated for the family of 2-state, 5-sum to-
talistic CA, several issues concerning this approach are still awaiting closer in-
spection. First, the studied CA family encloses not more than 64 rules, whereas
the usefulness of the approach should be checked against a much broader family.
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Second, the conclusions in this paper are drawn from one exemplary irregular
tessellation, which makes it debatable whether part of the CA behavior observed
is caused by the underlying tessellation, rather than by the CA’s intrinsic prop-
erties. Third, and closely related to the second issue, concerns the effects on CA
dynamics that may arise from using a regular rather than an irregular tessella-
tion. In forthcoming work we hope to shed some light on each of these issues,
and, by doing so, consolidating the approach discussed in this paper.

6 Conclusions

In this paper we proposed adequate measures, namely Lyapunov exponents and
Jacobian-based measure, that are able to grasp the dynamics of a CA regardless
the tessellation it is based upon, and to provide an objective means for comparing
the dynamics of CA across different tessellations of R

n. Further, the relationship
between both allows to obtain a mean-field approximation of the upper bound
on a CA’s Lyapunov exponent. The soundness of both measures is illustrated by
means of a simulation study in which we considered the family of 2-state, 5-sum
totalistic CA. In a forthcoming study, we employ both measures to quantitatively
describe the dependence of a CA’s dynamical properties on exploited tessellation.

Acknowledgments. The authors wish to acknowledge S. Wolfram and his co-
workers for their commitment in organizing the yearly New Kind of Science
Summer School, which served as a steppingstone for initiating this work.
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11. Courbage, M., Kamiński, B.: Space-time directional Lyapunov exponents for cel-
lular automata. J. Stat. Phys. 124, 1499–1509 (2006)

12. Crisci, G., Iovine, G., Gregorio, S.D., Lupiano, V.: Lava-flow hazard on the SE flank
of Mt. Etna (Southern Italy). J. Volcanol. Geotherm. Res. 177, 778–796 (2008)

13. D’Ambrosio, D., Spataro, W.: Parallel evolutionary modelling of geological pro-
cesses. Parallel Comput. 33, 186–212 (2007)

14. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern For-
mation: Characterization, Applications, and Analysis. Birkhäuser, Bonn, Germany
(2005)

15. Dewdney, A.: Sharks and fish wage an ecological war on the toroidal planet. Sci.
Am. 251, 14–22 (1984)

16. Ilachinski, A.: Cellular Automata. A Discrete Universe. World Scientific, London,
United Kingdom (2001)

17. Jackson, E.: Perspectives of Nonlinear Dynamics, vol. 1 and 2. Cambridge Univer-
sity Press, Cambridge, United Kingdom (1991)

18. Kier, L., Seybold, P., Cheng, C.: Modelling Chemical Systems using Cellular Au-
tomata. Springer, Dordrecht, The Netherlands (2005)

19. Langton, C.: Computation at the edge of chaos. Physica D 42, 12–37 (1990)
20. Mallet, D., De Pillis, L.: A cellular automata model of tumor-immune system

interactions. J. Theor. Biol. 239, 334–350 (2006)
21. Milne, J., Fu, S.: Epidemic modelling using cellular automata. In: Proc. ACAL’03.

pp. 43–57. Canberra (December 2003)
22. Parsons, J., Fonstad, M.: A cellular automata model of surface water flow. Hydrol.

Processes 21, 2189–2195 (2007)
23. Picioreanu, C., van Loosdrecht, M., Heijnen, J.: Mathematical modeling of biofilm

structure with a hybrid differential-discrete cellular automaton approach. Biotech-
nol. and Bioeng. 58, 101–116 (1998)

24. Pizarro, G., Griffeath, D., Noguera, D.: Quantitative cellular automaton model for
biofilms. J. Environ. Eng. 127, 782–789 (2001)

25. Preziosi, L.: Cancer Modelling and Simulation. Chapman & Hall, Boca Raton,
United States (2003)

26. Shereshevsky, M.: Lyapunov exponents for one-dimensional cellular automata. J.
Nonlinear Sci. 2, 1–8 (1991)

27. Tisseur, P.: Cellular automata and Lyapunov exponents. Nonlinearity 13, 1547–
1560 (2000)
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