GJ436b is a unique member of the transiting extrasolar planet population
being one of the smallest and least irradiated and possessing an eccentric
orbit. Because of its size, mass and density, GJ436b could plausibly have an
atmospheric metallicity similar to Neptune (20-60 times solar abundances),
which makes it an ideal target to study the effects of atmospheric metallicity
on dynamics and radiative transfer in an extrasolar planetary atmosphere. We
present three-dimensional atmospheric circulation models that include realistic
non-gray radiative transfer for 1, 3, 10, 30, and 50 times solar atmospheric
metallicity cases of GJ436b. Low metallicity models (1 and 3 times solar) show
little day/night temperature variation and strong high-latitude jets. In
contrast, higher metallicity models (30 and 50 times solar) exhibit day/night
temperature variations and a strong equatorial jet. Spectra and light curves
produced from these simulations show strong orbital phase dependencies in the
50 times solar case and negligible variations with orbital phase in the 1 times
solar case. Comparisons between the predicted planet/star flux ratio from these
models and current secondary eclipse measurements support a high metallicity
atmosphere (30-50 times solar abundances) with disequilibrium carbon chemistry
at play for GJ436b. Regardless of the actual atmospheric composition of GJ436b,
our models serve to illuminate how metallicity influences the atmospheric
circulation for a broad range of warm extrasolar planets.Comment: 25 pages, 13 figure