155 research outputs found

    Sensing with magnetic dipolar resonances in semiconductor nanospheres

    Get PDF
    In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractiveindex dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker's condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes. © 2013 Optical Society of America.B.G.-C. acknowledges support from the JAE-Doc program of the Spanish Council of Research (CSIC). This research has been funded by Ministerio de Ciencia e Innovación, through grants: Consolider NanoLight (CSD2007-00046), FIS2009-13430-C02, as well as by the Comunidad de Madrid (Microseres-CM, S2009/TIC-1476).Peer Reviewe

    Characterization of a Li-6 loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection

    Full text link
    The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% Li-6 is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and Cf-252 neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed.Comment: Submitted to Applied Radiation and Isotopes. 11 pages, 7 figures, 3 tables. Revision addresses reviewers' comment

    Stomatal responses of Eucalyptus species to elevated CO2 concentration and drought stress

    Get PDF
    Five species of Eucalyptus (E. grandis, E. urophylla, E. camaldulensis, E. torelliana, and E. phaeotrica), among the ten species most commonly used in large scale plantations, were selected for studies on the effects of elevated CO2 concentration [CO2] and drought stress on stomatal responses of 2.5-month old seedlings. The first three species belong to the subgenus Smphyomyrtus, whereas the fourth species belongs to the subgenus Corymbia and E. phaeotrica is from the subgenus Monocalyptus. Seedlings were grown in four pairs of open-top chambers, arranged to have 2 plants of each species in each chamber, with four replications in each of two CO2 concentrations: 350 ± 30 mumol mol-1 and 700 ± 30 mumol mol-1. After 100 days in the chambers, a series of gas exchange measurements were made. Half the plants in each chamber, one plant per species per chamber, were drought-stressed by withholding irrigation, while the remaining plants continued to be watered daily. Drought stress decreased stomatal conductance, photosynthesis and transpiration rates in all the species. The effect of drought stress on stomatal closure was similar in both [CO2]. The positive effects of elevated [CO2] on photosynthesis and water use efficiency were maintained longer during the stress period than under well-watered conditions. The photosynthetic rate of E. phaeotrica was higher even in the fourth day of the drought stress. Drought stress increased photoinhibition of photosynthesis, as measured by chlorophyll fluorescence, which varied among the species, as well as in relation to [CO2]. The results are in agreement with observed differences in stomatal responses between some eucalyptus species of the subgenera Symphyomyrtus and Monocalyptus

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of Υ(1S) and Υ(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The Υmesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the Υ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Performance of the CMS Level-1 trigger in proton-proton collisions at √s = 13 TeV

    Get PDF
    At the start of Run 2 in 2015, the LHC delivered proton-proton collisions at a center-of-mass energy of 13\TeV. During Run 2 (years 2015–2018) the LHC eventually reached a luminosity of 2.1× 1034^{34} cm2^{-2}s1^{-1}, almost three times that reached during Run 1 (2009–2013) and a factor of two larger than the LHC design value, leading to events with up to a mean of about 50 simultaneous inelastic proton-proton collisions per bunch crossing (pileup). The CMS Level-1 trigger was upgraded prior to 2016 to improve the selection of physics events in the challenging conditions posed by the second run of the LHC. This paper describes the performance of the CMS Level-1 trigger upgrade during the data taking period of 2016–2018. The upgraded trigger implements pattern recognition and boosted decision tree regression techniques for muon reconstruction, includes pileup subtraction for jets and energy sums, and incorporates pileup-dependent isolation requirements for electrons and tau leptons. In addition, the new trigger calculates high-level quantities such as the invariant mass of pairs of reconstructed particles. The upgrade reduces the trigger rate from background processes and improves the trigger efficiency for a wide variety of physics signals

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF
    corecore