42 research outputs found

    Buffering of Segmental and Chromosomal Aneuploidies in Drosophila melanogaster

    Get PDF
    Chromosomal instability, which involves the deletion and duplication of chromosomes or chromosome parts, is a common feature of cancers, and deficiency screens are commonly used to detect genes involved in various biological pathways. However, despite their importance, the effects of deficiencies, duplications, and chromosome losses on the regulation of whole chromosomes and large chromosome domains are largely unknown. Therefore, to explore these effects, we examined expression patterns of genes in several Drosophila deficiency hemizygotes and a duplication hemizygote using microarrays. The results indicate that genes expressed in deficiency hemizygotes are significantly buffered, and that the buffering effect is general rather than being mainly mediated by feedback regulation of individual genes. In addition, differentially expressed genes in haploid condition appear to be generally more strongly buffered than ubiquitously expressed genes in haploid condition, but, among genes present in triploid condition, ubiquitously expressed genes are generally more strongly buffered than differentially expressed genes. Furthermore, we show that the 4th chromosome is compensated in response to dose differences. Our results suggest general mechanisms have evolved that stimulate or repress gene expression of aneuploid regions as appropriate, and on the 4th chromosome of Drosophila this compensation is mediated by Painting of Fourth (POF)

    Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC To Maintain Tumorigenesis

    Get PDF
    The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis

    Mechanisms and mechanics of cell competition in epithelia

    Get PDF
    When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition

    Trends in Environmental Analysis

    Full text link

    Progress in the study of mercury methylation and demethylation in aquatic environments

    Get PDF

    The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    Full text link
    corecore