
   
 

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com   www.springer.com/scp 

                      
*Corresponding author (email: cai@fiu.edu) 

Review 

SPECIAL TOPICS:  

SPECIAL ISSUE January 2013  Vol.58  No.2: 177185 

Toxic Metal Pollution doi: 10.1007/s11434-012-5416-4 

Progress in the study of mercury methylation and demethylation in 
aquatic environments 

LI YanBin & CAI Yong* 

Department of Chemistry & Biochemistry, Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, 
USA 

Received March 23, 2012; accepted June 12, 2012; published online August 16, 2012 

 

Mercury (Hg) and its compounds are a class of highly toxic and pervasive pollutants. During the biogeochemical cycling of Hg, 
methylmercury (MeHg), a potent neurotoxin, can be produced and subsequently bioaccumulated along the food chain in aquatic 
ecosystems. MeHg is among the most widespread contaminants that pose severe health risks to humans and wildlife. Methylation 
of inorganic mercury to MeHg and demethylation of MeHg are the two most important processes in the cycling of MeHg, deter-
mining the levels of MeHg in aquatic ecosystems. This paper reviews recent progress on the study of Hg methylation and de-
methylation in aquatic environments, focusing on the following three areas: (1) sites and pathways of Hg methylation and de-
methylation, (2) bioavailability of Hg species for methylation and demethylation, and (3) application of isotope addition tech-
niques in quantitatively estimating the net production of MeHg. 
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Mercury (Hg) and its compounds are a class of highly toxic 
and pervasive pollutants. Over the past several decades, Hg 
contaminating and poisoning incidents have been reported 
in many counties (e.g. Japan, America, Canada, Sweden, 
and Norway) due to the large amount of Hg emitted into the 
environment, in particular from anthropogenic sources [1]. 
It was estimated that about 630000 infants born every year 
in the United States had an unsafe level of mercury in their 
blood [2]. Hg contamination is a global problem as one of 
the major Hg species, elemental mercury (Hg0) has an ap-
proximate atmospheric residence time of 6 month to 1 year 
[3] and therefore it can be transported to ecosystems that are 
far from the point sources through long range atmospheric 
transport.  

There are five major species of Hg in the environment, 
including Hg0, divalent inorganic mercury (Hg2+), mono- 
methylmercury (MeHg), dimethylmercury (DMeHg), and 
monoethylmercury (EtHg). Inorganic Hg (Hg0 and Hg2+), in 

particular Hg0, are the major chemical forms of Hg input 
into the environment from anthropogenic or natural sources 
[4,5]. During the biogeochemical cycling of Hg, organic 
mercury species (MeHg, DMeHg, and EtHg) can be pro-
duced. Although MeHg only accounts for a small fraction of 
Hg in the environment, it is the species of most concern to 
humans due to its high toxicity, prevalent existence, and 
capability of being accumulated and amplified along the 
food chain. The bioaccumulation of MeHg in the food chain, 
in particular in aquatic ecosystems, has caused the exposure 
of both humans and wildlife to MeHg, posing severe health 
risks [6] and stressing the importance of understanding the 
key processes controlling the levels of MeHg in aquatic 
environments.  

In most aquatic ecosystems, in situ production (methyla-
tion of inorganic Hg to MeHg), rather than input from run-
off water or atmospheric deposition, is the major source of 
MeHg. In addition to methylation of inorganic Hg, the re-
verse process, demethylation of MeHg, simultaneously oc-
curs in the environment. Both processes are important for 
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MeHg cycling, determining the levels of MeHg in aquatic 
environments. This paper reviews recent progress on the 
study of Hg methylation and demethylation, focusing on the 
following three areas: (1) sites and pathways of Hg methyl-
ation and demethylation, (2) bioavailability of Hg species 
for methylation and demethylation, and (3) application of 
isotope addition techniques in quantitatively estimating the 
production and degradation of MeHg in aquatic ecosystems.  

1  Sites of Hg methylation and demethylation in 
aquatic environments 

1.1  Methylation 

Adequate attention was not given to the methylation of in-
organic Hg in aquatic environments until researchers found 
that the major species of Hg present in fish was MeHg, ra-
ther than inorganic mercury or phenyl mercury, which were 
the species of Hg in industrial waters [7]. By adding HgCl2 
to bottom sediments and incubating for 5–10 d, Jensen and 
Jernelov firstly found that Hg2+ could be methylated to 
MeHg in sediments of aquatic ecosystems [7]. Since then, a 
large number of studies have suggested that methylation in 
sediment was the primary source of MeHg in most aquatic 
environments [8–11]. A good positive relation was often 
observed between MeHg concentration and in situ methyla-
tion potential in sediments of aquatic systems [12–16]. In 
addition to sediment, Hg methylation has been also ob-
served in water (both fresh water [17–19] and marine water  

[20,21]) and periphyton (floating mat or macrophyte associ-
ated) [22–29] (Figure 1) in recent years. As only a small 
proportion of MeHg produced in sediment can be trans-
ported to water column, methylation of Hg in compartments 
of water column (water and periphyton) may also contribute 
significantly to the MeHg pool in pelagic food webs. A re-
cent study showed that methylation in water column can be 
an important source of MeHg in the Arctic, accounting for 
around 47% of MeHg present in Arctic waters [21]. Meth-
ylation of mercury in periphyton may facilitate the bioac-
cumulation of MeHg in the food chain since periphyton can 
be the base of food webs in aquatic ecosystems [22]. How-
ever, the relative importance of periphyton or water methyl-
ation versus sediment methylation in MeHg levels in water 
column has yet to be clear. This is mainly due to the lack of 
quantitative estimation and comparison of the net produc-
tion of MeHg in water column (periphyton and/or water) 
and the amount of MeHg diffused from sediment to water. 
Such estimations are necessary for quantitative evaluation 
of the importance of methylation in periphyton and water to 
the cycling of MeHg in aquatic ecosystems. 

1.2  Demethylation 

MeHg demethylation is a reverse process of Hg methylation. 
It simultaneously occurs in the sites (sediment, periphyton, 
and water) that methylation takes place (Figure 1). However, 
methylation is supposed to overrule the demethylation pro-
cess and determine the net production of MeHg in sediment  

 

 

Figure 1  (Color online) Cycling of mercury in aquatic environments. 
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and periphyton. This opinion is supported by the phenome-
non that MeHg concentrations were often positively corre-
lated to the methylation potentials [12–16], other than the 
demethylation potentials in these compartments. Unlike in 
sediment and periphyton, demethylation in water, in partic-
ular photodemethylation was suggested to be more im-
portant than the methylation process [30–32]. The im-
portance of demethylation in water was firstly reported in 
the mid-1990s by Sellers et al. [30] They found that MeHg 
in water could be rapidly demethylated and about 83% of 
MeHg flowing into the lake would be removed by pho-
todemethylation. A number of recent studies using various 
means have confirmed the importance of photodemethyla-
tion in a wide range of aquatic ecosystems. Based on meas-
uring the rates of photodemethylation in water, this process 
was estimated to account for about 80% and 31.4% of the 
MeHg mobilized annually from sediments in a lake [31] and 
a wetland [32], respectively. In addition, a good inverse 
relationship was observed between MeHg concentrations 
and photodemethylation potentials in water column [32].  
Mass independent fractionation (MIF) of Hg isotopes in fish 
could also be used to quantify the loss of MeHg by pho-
todemethylation as this process leads to significant MIF of 
odd-mass isotopes [33]. About 25%–68% of MeHg in lakes 
were estimated to be lost via photodemethylation by meas-
uring MIF in fish [33]. In addition, a study [34] on the di-
urnal cycling of methylmercury in a wetland found that 
dissolved MeHg concentrations in water consistently de-
creased during daylight periods and increased during non- 
daylight periods. These studies on MeHg demethylation 
have suggested that MeHg photodemethylation in water can 
be a major sink of MeHg in various aquatic ecosystems. 

2  Pathways of Hg methylation and demethyla-
tion in aquatic environments 

2.1  Methylation 

Inorganic Hg can be methylated to MeHg in water phase 
through biotic pathways [35–50] or abiotic pathways (pho-
to-mediated or non photo-mediated chemical methylation) 

[51–66]. In natural aquatic environments, biotic process was 
generally suggested to be the dominant pathway of Hg 
methylation due to the fact that sterilization procedure could 
prohibit the methylation of Hg [7,67,68]. Sulfate reducing 
bacteria (SRB) were deemed to be responsible for the meth-
ylation of Hg2+ in most aquatic systems [69–73]. Methyla-
tion of Hg2+ by SRB in aquatic sediments was firstly con-
firmed by Compeau and Bartha [74]. In that study, they 
found that Hg2+ methylation in anoxic salt marsh sediment 
decreased more than 95% in presence of sodium molybdate, 
a specific inhibitor of sulfate reducers. They isolated a strain 
of SRB, Desulfovibrio desulfuricans, from the sediment and 
found that it could vigorously methylate Hg2+. Since then, 
SRB has been proposed to dominate the methylation of Hg 

in a variety of aquatic ecosystems based on the sodium mo-
lybdate inhibition [22,26,40,69] or good relations observed 
between sulfate reducing rates and Hg methylation rates 
[70]. Other microorganisms may also dominate the methyl-
ation of Hg, although this may only occur in limited aquatic 
ecosystems. For instance, iron-reducing bacteria were found 
to have the capability of methylating Hg2+ in both natural 
sediment [75] and pure culture [76]. A recent study [27] 
found that methylation rates in periphyton were totally in-
hibited by a methanogenesis inhibitor and highly stimulated 
by molybdate, indicating the involvement of methanogens 
in Hg methylation. 

Many chemicals, e.g., amino acids [77], humic substanc-
es [53,55,58], silicones [78], and low molecular weight or-
ganic acids [66], were found to be able to methylate inor-
ganic mercury in lab settings. Irradiance is necessary for 
some of these reactions [66,77]. However, importance of 
these reactions has yet to be confirmed in natural environ-
ments. In a recent study, methylation of Hg2+ by dissolved 
organic matter (DOM) under sunlight was proposed to oc-
cur in lake waters and cause the increase in MeHg concen-
tration during sunlight hours [19]. However, photomethyla-
tion or other chemical pathways of Hg methylation was 
rarely found to contribute significantly to MeHg production 
in other ecosystems. A recent study [79] indicated that 
methylation of Hg under sunlight played a minor role in a 
wetland as its rate was much slower than that of MeHg 
photodemethylation. Most previous studies only focused on 
the methylation of Hg2+ in the environment, while there is a 
lack of knowledge on the methylation of Hg0. Our recent 
study implied that photomethylation of Hg0 by CH3I can 
occur in Florida Everglades water and a pond water (Yin et 
al., in submission). Contribution of Hg0 methylation to 
MeHg pool also needs to be considered as Hg2+ can pro-
vides sufficient and continuous source of Hg0 through  
photo-mediated reduction in natural water. 

2.2  Demethylation 

Similar to methylation of Hg, demethylation of MeHg can 
also proceed through biotic [8,80–82] or abiotic pathways 
(photodemethylation [30–32,34,83–91] or non photo-medi- 
ated demethylation [92,93]). Biotic process was suggested 
to be the dominant pathway of Hg demethylation in sedi-
ment and periphyton. Both SRB and methanogens could be 
the primary microorganisms for this process [27,80,81,94]. 
Although microbial demethylation of MeHg was also ob-
served to occur in water column [18,20,95], photodemeth-
ylation was commonly deemed to be the most important in 
water column [30–32,89]. Non photo-mediated demethyla-
tion of MeHg can also occur in lab settings (e.g., by se-
lenoamino acids [92,93]), however this process has not been 
confirmed in natural environments. 

Since the initial demonstration of the importance of 
MeHg photodemethylation in aquatic ecosystems [30], a 
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number of studies have attempted to investigate the mecha-
nisms underlying this process [90,91]. UV radiations 
(UV-A and UV-B) have been confirmed to be the primary 
driver of MeHg photodegradation in both a northern tem-
perate lake and a subtropical wetland [32,89]. However, the 
chemical processes governing MeHg photodemethylation 
remain unclear. By reviewing the pathways of Hg photore-
actions in the literature, five potential pathways could be 
responsible for MeHg photodemethylation (Figure 2). Alt-
hough direct photodemethylation of MeHg species such as 
MeHgOH and MeHgCl (Pathway 1) is theoretically possi-
ble, recent studies showed that MeHg present in DI water 
cannot be demethylated under sunlight [90,91]. Free oxygen 
radical-induced degradation of MeHg (Pathway 2 or 3) was 
speculated to be the primary pathway of MeHg photodeg-
radation in previous studies [87,88,90,91]. Both hydroxyl 
radical (·OH) and singlet oxygen (1O2) have been proposed 
to dominate the photodemethylation of MeHg in aquatic 
ecosystems. By adding scavengers of singlet oxygen, su-
peroxide anion, hydrogen peroxide and hydroxyl radical, 
Suda et al. [85] found that singlet oxygen could be respon-
sible for the degradation of MeHg and EtHg in sea water. 
Another study suggested that 1O2 induced degradation of 
methylmercury-DOM complexes (Pathway 2 in Figure 2) 
was the major pathway of MeHg photodemethylation [91]. 
A recent work in Arctic lakes found that MeHg photode-
methylation was driven by hydroxyl radical produced from 
photo-Fenton reactions [90]. Some researchers proposed 
that Hg0 is the product of MeHg photodemethylation 
[33,88], while the others reported Hg2+ as the main product 
of this reaction [87,91]. If Hg0 is the main product in the 
aquatic environment, photodemethylation of MeHg could 
also be treated as a reduction process of Hg. Direct  

 

 

Figure 2  Possible pathways of MeHg photodemethylation in aquatic 
environments. By reviewing the pathways of Hg photoreactions in the 
literature, we proposed that five potential pathways could be responsible 
for MeHg photodemethylation: (1) direct photodemethylation of MeHg, (2) 
photodemethylation of MeHg-DOM complexes by free radicals, (3) pho-
todemethylation of MeHg by free radicals, (4) direct photodemethylation 
of MeHg-DOM complexes.  

transfer of electrons from photosensitized DOM to Hg 
within Hg-DOM complexes have been proposed to be one 
of the possible pathways for Hg2+ photoreduction [96]. Thus, 
direct degradation of DOM-MeHg complexes (Pathway 4) 
may also be a possible pathway of MeHg photodemethyla-
tion in some aquatic ecosystems. A recent study using DOM 
isolated from natural waters [97] found that MeHg pho-
todemethylation rate was not significantly decreased after 
adding scavengers of ·OH and 1O2, implying that Pathway 4 
may be the dominant pathway in this ecosystem. These re-
sults indicate that the pathways of MeHg photodemethyla-
tion may vary in different aquatic ecosystems, as evidenced 
by inconsistent results reported in previous studies [97]. The 
variation of MeHg photodemethylation pathway in different 
aquatic systems may be caused by their differences in 
chemical characteristics, e.g., DOM. A recent study showed 
that MIF of MeHg by photodemethylation was significantly 
affected by the amount of reduced organic sulfur [98], im-
plying that concentrations and characterization of DOM 
may play an important role in determining the dominant 
pathway of MeHg photodemethylation in water.  

3  Bioavailability of Hg species for Hg methyla-
tion and demethylation 

Bioavailability of Hg species is among the most important 
factors that determine the production of MeHg in aquatic 
ecosystems. Previous studies showed that measured Hg 
methylation rates were usually positively correlated not to 
the total Hg2+ concentrations, but to the calculated concen-
trations of Hg2+ available for methylation [99–101]. It is 
also known that the newly deposited Hg2+ are more bioa-
vailable for methylation compared to the legacy Hg2+  in 
sediment [102]. The bioavailability of Hg species in aquatic 
ecosystems is mainly determined by two processes: (1) dis-
tribution of Hg between solid and aqueous phase, and (2) 
speciation of Hg species in water phase (Figure 3).  

Distribution of Hg species between solid and aqueous 
phase is expected to significantly affect the bioavailability 
of Hg species as only dissolved Hg species can transport 
through cell membranes and subsequently be methylated or 
demethylated. The importance of adsorption/desorption on 
Hg bioavailability has been confirmed by both laboratory 
and field studies. When Pseudomonas fluorescens was test-
ed for its ability to methylate dissolved Hg2+ and Hg2+ ab-
sorbed on mineral colloids, the results showed that methyla-
tion rate of dissolve Hg2+ was much larger than that of Hg2+ 

absorbed on solids [103]. In addition, Hg methylation rates 
in surface sediments were observed to be inversely related 
to the distribution coefficients (K(D)) of Hg2+ and positively 
correlated to concentrations of Hg2+ in pore waters in some 
aquatic ecosystems [99,100]. The adsorption/desorption of 
Hg species is known to be affected by a variety of factors in 
aquatic environments, e.g., pH, redox potential, salinity,   



 Li Y B, et al.   Chin Sci Bull   January (2013) Vol.58 No.2 181 

 

Figure 3  Hg2+ and MeHg complexes present in aquatic environments. 
Bold: species that have been reported to be the major species available for 
biotic methylation and demethylation. Italic: species that have been re-
ported to be the major Hg species available for photodemethylation. 

organic and inorganic complexing reagents, composition of 
solid. These factors are also expected to play an important 
role in controlling the bioavailability of Hg2+ in aquatic en-
vironments. Unlike the biotic methylation and demethyla-
tion, photodemethylation rates of MeHg were observed to 
be similar in filtrated and un-filtrated waters [89], implying 
that adsorption/desorption of MeHg in water column plays a 
minor role in the photodemethylation of MeHg.  

Hg2+ and MeHg in aquatic environments are generally 
not free ions, but complexed to various inorganic or organic 
ligands, including hydroxide, chloride, sulfides, and DOM 
[104]. The dominant species of Hg2+ and MeHg in water or 
porewater depends upon various physical and chemical pa-
rameters, e.g., pH, Eh, sulfide, Cl−, and DOM [104–108].  

As not all of these complexes are available for methylation 
and demethylation, speciation of Hg species in water and 
porewater is another important factor determining bioavail-
ability of Hg species. Neutral Hg-sulfide complexes (e.g. 
HgS(0)(aq) and Hg(SH)2) have been suggested to be the ma-
jor species of Hg that are available for methylation since the 
late 1990s [101,105,109–112]. It was proposed that these 
neutral Hg species could be transported to microorganism 
cells by passive diffusion and then methylated [109–110]. 
This opinion was supported by the positive relationship 
between Hg methylation rates and calculated concentrations 
of neutral Hg-sulfide complex in solution, which was ob-
served both in laboratory pure culture of SRB [101,111] and 
field investigations [112,113]. Hg2+-thiol complexes are 
another Hg2+ species that have been proposed to be availa-
ble for methylation [114,115]. In a recent study, methyla-
tion of Hg2+ by Geobacter sulfurreducens was found to be 
greatly enhanced in the presence of low concentrations of 

cysteine. The authors proposed that the formation of Hg2+- 
cysteine complexes, which could be transported to cells by 
active transport [115], facilitated both the uptake and meth-
ylation of Hg2+ [114]. However, the importance of Hg-thiol 
complexes in the methylation of Hg has yet to be confirmed 
in natural environments. As mercury in aquatic ecosystems 
is expected to preferentially bind with thiol and other sul-
fur-containing groups in organic matter [116], it is neces-
sary to investigate whether this process plays an important 
role in Hg methylation in natural environments.  

Similar to the biotic methylation and demethylation of 
Hg, photodemethylation of MeHg can also be affected by 
the speciation of MeHg in water column. A previous study 
reported that sunlight-induced MeHg photodegradation 
could not occur when MeHgCl, MeHgOH or MeHg ion was 
the dominant species of MeHg in water, while phenyl and 
sulfur bonded MeHg species could be decomposed [117]. A 
recent study suggested that methylmercury species bound to 
sulphur-containing ligands such as glutathione and mercap-
toacetate had a much higher demethylation rates than 
methylmercury-chloride complexes [91]. Despite these 
findings in laboratory studies, it is still unclear which spe-
cies of MeHg dominate the photodemethylation process in 
natural waters and more attention should be paid to this area. 

4  Application of isotope addition technique in 
the study of Hg methylation and demethylation 
and estimating the net production of MeHg in 
aquatic environments  

Since the finding of the importance of methylation and de-
methylation in aquatic ecosystems, efforts have been made 
to precisely measure the Hg methylation and demethylation 
rates, which are important for quantitatively estimating the 
production of MeHg. Isotope addition technique has been 
applied in this field since the late 1970s [17,118] due to its 
high accuracy and precision, short incubation time, and 
ability of simultaneously determining the methylation and 
demethylation rates. Both radio [17,118–120] and stable 
isotope addition methods [15,20,32,89,102,121–128] have 
been applied in this field. When radio isotope addition 
method was adopted, a radio isotope of Hg2+ (e.g., 203Hg2+) 
is spiked into samples to monitor the methylation process. 
C-14 labeled MeHg is usually used to examine the demeth-
ylation process. Stable isotope addition methods have been 
widely using in studying Hg methylation and demethylation 
since the mid-1990s [122]. By using this technique, stable 
isotope labeled Hg2+ (e.g., 199Hg2+) and/or MeHg (e.g., 
Me201Hg) were added into samples to monitor methylation 
and/or demethylation process, respectively. Although both 
techniques promise a precise measurement of Hg methyla-
tion and demethylation rates, application of radio isotope 
addition techniques are limited due to its disadvantage of 
utilizing highly radioactive material and usually requiring 
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specific safety measures [129].  
Net MeHg production rate is a crucial parameter for   

estimating the net production of MeHg in various compart-
ments of aquatic ecosystems, which is necessary for identi-
fying the major source and sink of MeHg in aquatic ecosys-
tems. This parameter can be calculated by incubating the 
samples without the addition of any Hg species and meas-
uring the changes in ambient MeHg. However, changes in 
ambient MeHg are usually difficult to be accurately meas-
ured as variation in ambient MeHg is often too small to be 
detected [119]. By utilizing isotope addition techniques, a 
method based on measuring the specific methylation and 
demethylation rates has been developed and used to esti-
mate the net MeHg production rate [14,27,130]. In these 
studies, methylation (km) and demethylation (kd) rate con-
stants were measured and calculated (eqs. (1) and (2)) by 
double isotope addition methods. Then, the net production 
rates of MeHg were calculated by the difference of potential 
methylation rate ( 2m Hg

(ambient)k C  and potential demeth-

ylation rate ( d MeHg (ambient)k C ) (eq. (3)). However, such 

calculation does not take consideration of the differences in 
bioavailability of ambient and newly spiked Hg species 
[102]. A significant error could occur with this omission. 
For example, a recent study showed that the net production 
rate of MeHg in Everglades sediment would be overesti-
mated by a factor of 20 without the consideration of the 
difference of newly spiked and ambient Hg species in 
methylation and demethylation efficiency [79]. Thus, it is 
necessary to take consideration of this difference ( and  
in eq. (4)) when calculating the net production of MeHg 
using isotope addition techniques. In previous studies [102], 
 and  were obtained by measuring the methylation and 
demethylation rates of ambient and newly spiked Hg spe-
cies, which is also based on the accurate measurement of 
changes in ambient MeHg concentrations. Due to the diffi-
culty of accurate measuring the variation in ambient MeHg, 
it is necessary to develop a method that can accurately 
measure the differences of ambient and newly spiked mer-
cury species in methylation and demethylation efficiency.  
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where km is the specific methylation rate constant of spiked 
mHg2+ (d−1); kd is the specific demethylation rate constant of 

spiked MenHg (d−1); t is the incubation time (d); m 2Hg
C 

 
and nMe Hg

C
 

are the spiked concentrations of mHg2+ and 

MenHg (ng g−1), respectively;  is the ratio of methylation 
rate constant of ambient to newly spiked Hg2+;  is the ratio 
of demethylation rate constant of ambient to newly spiked 
MeHg. 

5  Concluding remarks 

Methylation and demethylation of mercury are a significant 
part of MeHg cycling, determining the levels of MeHg in 
aquatic ecosystems. They can occur in various compart-
ments of aquatic ecosystems, including sediment, periphy-
ton and water. Biotic methylation in sediment and pho-
todemethylation in water are suggested to be the major 
source and sink of MeHg in aquatic environments. Recent 
studies found that biotic methylation in periphyton and wa-
ter could also contribute significantly to the MeHg pool, in 
particular for the pelagic food webs. The relative im-
portance of methylation in periphyton and/or water versus 
sediment in MeHg levels in pelagic food webs has yet to be 
clear. This is mainly due to the lack of quantitative estima-
tion and comparison of the net production of MeHg in water 
column (periphyton and/or water) and the amount of MeHg 
diffused from sediment to water. Such estimations are nec-
essary for evaluating the importance of methylation in pe-
riphyton and water to the cycling of MeHg in aquatic eco-
systems. 

Much work is also required in the study of bioavailability 
of Hg species for methylation and demethylation. Distribu-
tion of Hg between solid and water and speciation of Hg 
species in aqueous phase are the two factors that determine 
the bioavailability of Hg species. Both neutral Hg2+-sulfide 
complexes and Hg2+-thiol complexes have been proposed as 
the species of Hg2+ that can be transported to bacteria cells, 
and subsequently being methylated. More work is required 
to identify which is the dominant species of Hg2+ that asso-
ciate with the biotic methylation of Hg in natural environ-
ments. In comparison to Hg2+, bioavailability of MeHg for 
both biotic demethylation and photodemethylation has been 
poorly studied and requires more attentions.  

More efforts should also be made on estimating the net 
MeHg production rate, which is important for identifying 
the major source of MeHg in aquatic ecosystems. Isotope 
addition technique is a useful technique in this area due to 
its high accuracy and precision, short incubation time, and 
ability of simultaneously determining the methylation and 
demethylation rates. The difference of newly spiked and 
ambient mercury species in methylation and demethylation 
efficiency should be taken into account when estimating this 
rate using isotope addition techniques. There is an urgent 
need to develop a method that can accurately measure the 
differences between ambient and newly spiked mercury 
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species in methylation and demethylation efficiency.  
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