697 research outputs found

    Effect of tilt angle on the performance of a thin-film photovoltaic system

    Get PDF
    Solar energy is among the cleanest and most sustainable ways to enhance electrical supply's resiliency and reliability for domestic and industrial use. A Photovoltaic (PV) system is the most effective way of capturing solar energy. Long-term warranty, low-cost maintenance, and vast resource availability, solar power generation has an advantage over other approaches. Thin-film technology PV cells are a new kind of solar cell that offers an efficient technique of generating electricity from sunlight. The thin-film PV technology (FFMAT-10, Renovagen, UK) used in this study can supply 0.9 to 1.6 kW of energy to the fast-fold energy hub. The hub’s system status and configuration display battery power input, battery’s state of charge, thin-film PV power and AC power output. Two fast-fold mats (with a surface area of 25.3 m2) were connected to the energy hub. Increasing energy demand coupled with frequent power outages, and inaccessibility of electricity in rural areas necessitates the usage of PV systems at their best performance level. The study objective, therefore, sought to assess the effect of tilt angle on the performance of the thin-film PV system. The study was conducted at Kimicha in Kirinyaga County Kenya, and Juja, Kenya at tilt angles between 0o to 30o. The results indicated that the mean peak PV power for Kimicha was 347.8±231.9 W at 5o and 517.7± 131.3 W at 15ofor Juja. The maximum solar radiation during the study period was 1086.4 ±211.4 W/m2 for Juja and 973.5±219.93 W/m2 for Kimicha. From the study, it was realized that an optimal tilt angle yields optimum solar radiation that translates to maximum power production. Even though the study was conducted in two different regions, it may be applied to any other geographical location. The outcome of the study aids in acquiring self-sustaining power in the most remote locations where electricity is scarce as well as improving energy security

    New evidence on Allyn Young's style and influence as a teacher

    Get PDF
    This paper publishes the hitherto unpublished correspondence between Allyn Abbott Young's biographer Charles Blitch and 17 of Young's former students or associates. Together with related biographical and archival material, the paper shows the way in which this adds to our knowledge of Young's considerable influence as a teacher upon some of the twentieth century's greatest economists. The correspondents are as follows: James W Angell, Colin Clark, Arthur H Cole, Lauchlin Currie, Melvin G de Chazeau, Eleanor Lansing Dulles, Howard S Ellis, Frank W Fetter, Earl J Hamilton, Seymour S Harris, Richard S Howey, Nicholas Kaldor, Melvin M Knight, Bertil Ohlin, Geoffrey Shepherd, Overton H Taylor, and Gilbert Walker

    Complete Exact Solution of Diffusion-Limited Coalescence, A + A -> A

    Full text link
    Some models of diffusion-limited reaction processes in one dimension lend themselves to exact analysis. The known approaches yield exact expressions for a limited number of quantities of interest, such as the particle concentration, or the distribution of distances between nearest particles. However, a full characterization of a particle system is only provided by the infinite hierarchy of multiple-point density correlation functions. We derive an exact description of the full hierarchy of correlation functions for the diffusion-limited irreversible coalescence process A + A -> A.Comment: 4 pages, 2 figures (postscript). Typeset with Revte

    Two-Species Annihilation with Drift: A Model with Continuous Concentration-Decay Exponents

    Full text link
    We propose a model for diffusion-limited annihilation of two species, A+B→AA+B\to A or BB, where the motion of the particles is subject to a drift. For equal initial concentrations of the two species, the density follows a power-law decay for large times. However, the decay exponent varies continuously as a function of the probability of which particle, the hopping one or the target, survives in the reaction. These results suggest that diffusion-limited reactions subject to drift do not fall into a limited number of universality classes.Comment: 10 pages, tex, 3 figures, also available upon reques

    The infrared Hourglass cluster in M8

    Get PDF
    A detailed study of the Hourglass Nebula in the M8 star forming region is presented. The study is mainly based on recent subarcsec-resolution JHKs images taken at Las Campanas Observatory and complemented with archival HST images and longslit spectroscopy retrieved from the ESO Archive Facility. Using the new numerical code CHORIZOS, we estimate the distance to the earliest stars in the region to be 1.25 kpc. Infrared photometry of all the sources detected in the field is given. From analysis of the JHKs colour-colour diagrams, we find that an important fraction of these sources exhibit significant infrared excess. These objects are candidates to be low- and intermediate-mass pre-main sequence stars. Based on HST observations, the spatial distribution of gas, dust and stars in the region is analyzed. The morphological analysis of these images also reveals a rich variety of structures related to star formation (proplyds, jets, bow shocks), similar to those observed in M16 and M42, along with the detection of the first four Herbig-Haro objects in the region. Furthermore, a longslit spectrum obtained with NTT confirms the identification of one of them (HH 870) in the core of the Hourglass nebula, providing the first direct evidence of active star formation by accretion in M8.Comment: 22 pages, 15 figures, 3 tables, submitted to MNRAS. A preprint with high-resolution figures is available at http://www.dfuls.cl/~rbarba/arias_hourglass.pd

    What’s Sex (Composition) Got to Do with It? The Importance of Sex Composition of Gangs for Female and Male Members’ Offending and Victimization

    Get PDF
    Sex composition of groups has been theorized in organizational sociology and found in prior work to structure female and male members’ behaviors and experiences. Peer group and gang literature similarly finds that the sex gap in offending varies across groups of differing sex ratios. Drawing on this and other research linking gang membership, offending, and victimization, we examine whether sex composition of gangs is linked to sex differences in offending in this sample, further assess whether sex composition similarly structures females’ and males’ victimization experiences, and if so, why. Self-report data from gang members in a multi-site, longitudinal study of 3,820 youths are employed. Results support previous findings about variations in member delinquency by both sex and sex composition of the gang and also indicate parallel variations in members’ victimization. These results are further considered within the context of facilitating effects such as gender dynamics, gang characteristics, and normative orientation

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    CANDELS: The progenitors of compact quiescent galaxies at z~2

    Get PDF
    We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure
    • …
    corecore