202 research outputs found

    Another tool in the genome-wide association study arsenal: population-based detection of somatic gene conversion

    Get PDF
    The hunt for the genetic contributors to complex disease has used a number of strategies, resulting in the identification of variants associated with many of the common diseases affecting society. However most of the genetic variants detected to date are single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) and fall far short of explaining the full genetic component of any given disease. An as yet untapped genomic mechanism is somatic gene conversion and deletion, which could be complicit in disease risk but has been challenging to detect in genome-wide datasets. In a recent publication in BMC Medicine by Kenneth Ross, the author uses existing datasets to look at somatic gene conversion and deletion in human disease. Here, we describe how Ross's recent efforts to detect such occurrences could impact the field going forward

    A new resorbable device for ligation of blood vessels - A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During surgery, controlled haemostasis to prevent blood loss is vital for a successful outcome. It can be difficult to ligate vessels located deep in the abdomen. A device that is easy to use and enables secure ligatures could be beneficial. Cable ties made of nylon have been used for ligation but the non-resorbable material caused tissue reactions. The objective of this study was to use a resorbable material to construct a device with a self-locking mechanism and to test its mechanical strength and ligation efficiency.</p> <p>Methods</p> <p>The device was manufactured by injection moulding of polydioxanone, a resorbable polymer used for suture materials. Polydioxanone with inherent viscosities of 1.9 dL/g and 1.3 dL/g were tested. The device consisted of a perforated flexible band which could be pulled through a case with a locking mechanism. After a first version of the device had been tested, some improvements were made. The locking case was downsized, corners were rounded off, the band was made thicker and the mould was redesigned to produce longer devices. Tensile tests were performed with the second version.</p> <p>The first version of the device was used to ligate the ovarian pedicle in a euthanized dog and to test echogenicity of the device with ultrasound. Compression of vessels of the ovarian pedicle was examined by histology. Both versions of the device were tested for haemostasis of and tissue grip on renal arteries in six anaesthetised pigs.</p> <p>Results</p> <p>The tensile strength of the flexible band of the devices with inherent viscosity of 1.9 dL/g was 50.1 ± 5.5 N (range 35.2-62.9 N, <it>n </it>= 11) and the devices with inherent viscosity of 1.3 dL/g had a tensile strength of 39.8 ± 8.1 N (range 18.6-54.2 N, <it>n </it>= 11). Injection moulding of the polymer with lower inherent viscosity resulted in a longer flow distance.</p> <p>Both versions of the device had an effective tissue grip and complete haemostasis of renal arteries was verified. The device attached to the ovarian pedicle could be seen with ultrasound, and vessel compression and occlusion were verified by histology.</p> <p>Conclusions</p> <p>Tests of functionality of the device showed complete haemostasis and good tissue grip. Devices with a band of sufficient length were easily applied and tightened in tissue.</p

    Targeted high-throughput sequencing for genetic diagnostics of hemophagocytic lymphohistiocytosis

    Get PDF
    Background: Hemophagocytic lymphohistiocytosis (HLH) is a rapid-onset, potentially fatal hyperinflammatory syndrome. A prompt molecular diagnosis is crucial for appropriate clinical management. Here, we validated and prospectively evaluated a targeted high-throughput sequencing approach for HLH diagnostics. Methods: A high-throughput sequencing strategy of 12 genes linked to HLH was validated in 13 patients with previously identified HLH-associated mutations and prospectively evaluated in 58 HLH patients. Moreover, 2504 healthy individuals from the 1000 Genomes project were analyzed in silico for variants in the same genes. Results: Analyses revealed a mutation detection sensitivity of 97.3 %, an average coverage per gene of 98.0 %, and adequate coverage over 98.6 % of sites previously reported as mutated in these genes. In the prospective cohort, we achieved a diagnosis in 22 out of 58 patients (38 %). Genetically undiagnosed HLH patients had a later age at onset and manifested higher frequencies of known secondary HLH triggers. Rare, putatively pathogenic monoallelic variants were identified in nine patients. However, such monoallelic variants were not enriched compared with healthy individuals. Conclusions: We have established a comprehensive high-throughput platform for genetic screening of patients with HLH. Almost all cases with reduced natural killer cell function received a diagnosis, but the majority of the prospective cases remain genetically unexplained, highlighting genetic heterogeneity and environmental impact within HLH. Moreover, in silico analyses of the genetic variation affecting HLH-related genes in the general population suggest caution with respect to interpreting causality between monoallelic mutations and HLH. A complete understanding of the genetic susceptibility to HLH thus requires further in-depth investigations, including genome sequencing and detailed immunological characterization.Peer reviewe

    TGFBR1 variants TGFBR1*6A and Int7G24A are not associated with an increased familial colorectal cancer risk

    Get PDF
    Variants of the transforming growth factor-beta receptor type 1 (TGFBR1) gene, TGFBR1*6A and Int7G24A, have been suggested to act as low-penetrance tumour susceptibility alleles with TGFBR1*6A being causally responsible for some cases of familial colorectal cancer (CRC). We performed a case–control study of 262 unrelated familial CRC cases; 83 hereditary non-polyposis colorectal cancer (HNPCC) and 179 non-HNPCC. Patients were genotyped for TGFBR1*6A and Int7G24A and compared with 856 controls. Further, we screened the coding region of TGFBR1 in affected members of a large family with CRC linked to 9q22.32-31.1. TGFBR1*6A allelic frequency was not significantly different in all of the familial cases compared with controls (0.107 and 0.106, respectively; P=0.915). In a subgroup analysis allele frequencies were, however, different between HNPCC and non-HNPCC familial cases (0.157 and 0.084, respectively; P=0.013). TGFBR1*6A genotype did not influence age of onset. Int7G24A allele frequencies were similar in cases and controls. No germ-line mutation was identified in the family with CRC linked to this chromosomal region. Our study provides no substantial support for the hypothesis that the polymorphic variants TGFBR1*6A or Int7G24A contribute to familial CRC risk. We cannot, however, exclude the possibility that TGFBR1 variants have a modifying effect on inherited risk per se

    Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q

    Get PDF
    Background: Colorectal cancer is one of the most common causes of cancer-related mortality. The disease is clinically and genetically heterogeneous though a strong hereditary component has been identified. However, only a small proportion of the inherited susceptibility can be ascribed to dominant syndromes, such as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) or Familial Adenomatous Polyposis (FAP). In an attempt to identify novel colorectal cancer predisposing genes, we have performed a genome-wide linkage analysis in 30 Swedish non-FAP/non-HNPCC families with a strong family history of colorectal cancer.Methods: Statistical analysis was performed using multipoint parametric and nonparametric linkage.Results: Parametric analysis under the assumption of locus homogeneity excluded any common susceptibility regions harbouring a predisposing gene for colorectal cancer. However, several loci on chromosomes 2q, 3q, 6q, and 7q with suggestive linkage were detected in the parametric analysis under the assumption of locus heterogeneity as well as in the nonparametric analysis. Among these loci, the locus on chromosome 3q21.1- q26.2 was the most consistent finding providing positive results in both parametric and nonparametric analyses Heterogeneity LOD score (HLOD) = 1.90, alpha = 0.45, Non-Parametric LOD score (NPL) = 2.1).Conclusion: The strongest evidence of linkage was seen for the region on chromosome 3. Interestingly, the same region has recently been reported as the most significant finding in a genome-wide analysis performed with SNP arrays; thus our results independently support the finding on chromosome 3q

    The genetic diagnosis of rare endocrine disorders of sex development and maturation : a survey among Endo-ERN centres

    Get PDF
    Differences of sex development and maturation (SDM) represent a heterogeneous puzzle of rare conditions with a large genetic component whose management and treatment could be improved by an accurate classification of underlying molecular conditions, and next-generation sequencing (NGS) should represent the most appropriate approach. Therefore, we conducted a survey dedicated to the use and potential outcomes of NGS for SDM disorders diagnosis among the 53 health care providers (HCP) of the European Reference Network for rare endocrine conditions. The response rate was 49% with a total of 26 HCPs from 13 countries. All HCPs, except 1, performed NGS investigations for SDM disorders on 6720 patients, 3764 (56%) with differences of sex development (DSD), including 811 unexplained primary ovarian insufficiency, and 2956 (44%) with congenital hypogonadotropic hypogonadism (CHH). The approaches varied from targeted analysis of custom gene panels (range: 11-490 genes) in 81.5% of cases or whole exome sequencing with the extraction of a virtual panel in the remaining cases. These analyses were performed for diagnostic purposes in 21 HCPs, supported by the National Health Systems in 16 cases. The likelihood of finding a variant ranged between 7 and 60%, mainly depending upon the number of analysed genes or criteria used for reporting, most HCPs also reporting variants of uncertain significance. These data illustrate the status of genetic diagnosis of DSD and CHH across Europe. In most countries, these analyses are performed for diagnostic purposes, yielding highly variable results, thus suggesting the need for harmonization and general improvements of NGS approaches.publishersversionPeer reviewe

    Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population

    Get PDF
    <div><p>Genome-wide association studies (GWAS) have identified dozens of common genetic variants associated with risk of colorectal cancer (CRC). However, the majority of CRC heritability remains unclear. In order to discover low-frequency, high-risk CRC susceptibility variants in Swedish population, we genotyped 1 515 CRC patients enriched for familial cases, and 12 108 controls. Case/control association analysis suggested eight novel variants associated with CRC risk (OR 2.0–17.6, p-value < 2.0E-07), comprised of seven coding variants in genes <i>RAB11FIP5</i>, <i>POTEA</i>, <i>COL27A1</i>, <i>MUC5B</i>, <i>PSMA8</i>, <i>MYH7B</i>, and <i>PABPC1L</i> as well as one variant downstream of <i>NEU1</i> gene. We also confirmed 27 out of 30 risk variants previously reported from GWAS in CRC with a mixed European population background. This study identified rare, coding sequence variants associated with CRC risk through analysis in a relatively homogeneous population. The segregation data suggest a complex mode of inheritance in seemingly dominant pedigrees.</p></div

    Loss of ZnT8 function protects against diabetes by enhanced insulin secretion.

    Get PDF
    A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D
    corecore