306 research outputs found

    The effect of ethanol, petrol and rapeseed oil blends on direct injection diesel engine performance and exhaust emissions

    Get PDF
    The article deals with the testing results of a four stroke four cylinder, DI diesel engine operating on pure rapeseed oil (RO) and its 2.5vol%, 5vol% and 7.5vol% blends with ethanol (ERO) and petrol (PRO). The purpose of this study is to examine the effect of ethanol and petrol addition to RO on blend viscosity, percentage changes in brake mean effective pressure (bmep), brake specific fuel consumption (bsfc), the brake thermal efficiency (çe) of a diesel engine and its emission composition, including NO, NO2, NOX, CO, CO2, HC and the smoke opacity of exhausts. The addition of 2.5, 5 and 7.5vol% of ethanol and the same percentage of petrol into RO, at a temperature of 20 °C, diminish the viscosity of the blends by 9.2%, 21.3%, 28.3% and 14.1%, 24.8%, 31.7% respectively. Heating biofuels up to a temperature of 60 °C, diminishes the kinematic viscosity of RO, blends ERO2.5–7.5 and PRO2.5–7.5 4.2, 3.9–3.8 and 3.9–3.7 times accordingly. At a speed of 1400–1800 min‐1, bmep higher by 1.3% if compared with that of RO (0.772–0.770 MPa) ensures blend PRO2.5, whereas at a rated speed of 2200 min‐1 , bmep higher by 5.6–2.7% can be obtained when fuelling the loaded engine, ë = 1.6, with both PRO2.5–5 blends. The bsfc of the engine operating on blend PRO2.5 at maximum torque and rated power is respectively 3.0% and 5.5% lower. The highest brake thermal efficiency at maximum torque (0.400) and rated power (0.415) compared to that of RO (0.394) also suggests blend PRO2.5. The largest increase in NOXemissions making 1907 ppm (24.8%) and 1811 ppm (19.6%) compared to that of RO was measured from a more calorific blend PRO7.5 (9.99% oxygen) at low (1400 min‐1) and rated (2200 min‐1) speeds. The emission of carbon monoxide from blends ERO2.5–5 throughout the whole speed range runs lower from 6.1% to 32.9% and the smoke opacity of the fully loaded engine changes from 5.1% which is a higher to 46.4% which is a lower level if compared to the corresponding data obtained using pure RO. The CO2 emissions of carbon monoxide and the temperature of the exhausts generated by the engine running at a speed of 2200 min‐1 diminish from 7.8 vol% to 6.3vol% and from 500 °C to 465 °C due to the addition of 7.5vol% of ethanol to RO. First published online: 24 Jun 201

    The influence of the cetane number and lubricity improving additives on the quality parameters of aviation-turbine fuel

    Get PDF
    In order to recommend jet fuel for powering diesel engines the quality parameters of the following fuels were determined: diesel fuel (NATO code F-54) according to standard LST EN 590: 2014, jet fuel (NATO code F-35 and F-34) according to standard ASTM D 1655 and U.S.MIL-DTL-83133E, and jet fuel was treated with additives at the Centre of Quality research laboratory located at “ORLEN Lietuva” Ltd. Basic quality parameters of alternative jet fuels were analysed and compared with the reference parameters of diesel fuel. It was determined that the use of additives in jet fuel improves its parameters up to a level which satisfies the corresponding characteristics of normal diesel fuel: cetane number, lubricating properties, net heating value per unit of mass, sulphur content and, therefore, can be recommended for the use in land-based transport means and power generators

    The effect of fuel additive SO‐2E on diesel engine performance when operating on diesel fuel and shale oil

    Get PDF
    The purpose of this research is to perform comparative analysis of the effect of fuel additive SO‐2E on the economical and ecological parameters of a direct‐injection Diesel engine, operating on Diesel fuel and shale oil alternately. It was proved that multifunctional fuel additive SO‐2E applied in proportion 0,2 vol % is more effective for improving combustion of shale oil than Diesel fuel. At light operation range the treated shale oil savings based upon fuel energy content throughout wide speed range 1400–2000 min−1 reduce from 14,6–12,3MJ/kWh to 11,6–11,8 MJ/kWh or by 20,5–4,1 %. Maximum NO emission for treated Diesel fuel was reduced by 7,8–11,8 %, whereas NO2 simultaneously increased by 3,8–7,4 %. In the case of treated shale oil both harmful pollutants were reduced by 22,9–28,6 % and by 41,6–13,4 %, respectively. The exhaust gas opacity and CO emissions at the rated performance regime for both fuels were obtained a bit higher, whereas HC emission for treated shale oil increases 1,9 times and for Diesel fuel remains on the same level. First Published Online: 27 Oct 201

    Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass

    Full text link
    This work evaluates the potential of some new biomass-derived fuels as candidates for compression ignition operation. Thus, fundamental spray characteristics related to fuel vaporization and fuel/air mixing process for 2-Methyltetrahydrofuran, Di-n-butyl ether and 1-octanol has been studied and compared with conventional EN590 Diesel fuel. For this purpose, OH⁄ chemiluminescence and shadowgraphy measurements in a high pressure chamber as well as 1D simulations with a spray model have been carried out at different operating conditions representative of the NEDC driving cycle. Finally, measured soot emissions in the single-cylinder engine were presented and discussed. Results from the high pressure chamber presented very good agreement in terms of liquid length and vapor penetration with simulation results. Thus, some analytical expressions related to macroscopic spray characteristics have been proposed and validated experimentally for all four fuels. Finally, the single-cylinder engine results confirmed the relevant role of soot formation on final emissions for 1-octanol and 2-MTHF. In addition, DNBE showed greater soot oxidation potential than diesel and other TMFB candidates.This work was performed as part of the Cluster of Excellence "Tailor-Made Fuels from Biomass", which is funded by the Excellence Initiative by the German federal and state governments. Simulation works have been partially funded by Spanish government under the grant "Jose Castillejo" (CAS12/000097).García Martínez, A.; Monsalve Serrano, J.; Heuser, B.; Jakob, M.; Kremer, F.; Pischinger, S. (2016). Influence of fuel properties on fundamental spray characteristics and soot emissions using different tailor-made fuels from biomass. Energy Conversion and Management. 108:243-254. https://doi.org/10.1016/j.enconman.2015.11.010S24325410

    A new approach to formulation of complex fuel surrogates

    Get PDF
    This paper presents a new approach to the formulation of fuel surrogates in application to gasoline, diesel, and their biofuel blends (including blends of biodiesel/diesel and ethanol/gasoline). This new approach, described as a ‘Complex Fuel Surrogates Model (CFSM)’, is based on a modified version of the Multi-Dimensional Quasi-Discrete Model (MDQDM). The new approach is aimed to reduce the full composition of fuel to a much smaller number of components based on their mass fractions to formulate fuel surrogates. The formulated surrogates for gasoline and blended ethanol/gasoline fuels matched the data of the full compositions of the same fuels for droplet lifetime, surface temperature, density, vapour pressure, H/C ratio, molar weight and research octane number, using the CFSM. Also, the cetane number and viscosity of diesel and biodiesel/diesel blends were mimicked by their suggested surrogates. The results were verified, with up to 7.2% errors between the two sets of predicted droplet lifetimes: surrogates and full compositions of fuels

    Development of a Diesel Surrogate Fuel Library

    Full text link
    [EN] Diesel fuel is composed of a complex mixture of hundreds of hydrocarbons that vary globally depending on crude oil sources, refining processes, legislative requirements and other factors. In order to simplify the study of this fuel, researchers create surrogate fuels to mimic the physical and chemical properties of Diesel fuels. This work employed the commercial software Reaction Workbench - Surrogate Blend Optimizer (SBO) to develop a Surrogate Fuel Library containing 18 fuels. Within the fuel library, the cetane number ranges from 35 to 60 (in increments of 5) at threshold soot index (TSI) levels representative of low, baseline and high sooting tendency fuels (TSI = 17, 31 and 48, respectively). The Surrogate Fuel Library provides the component blend ratios and predicted properties for cetane number, threshold soot index, lower heating value, density, kinematic viscosity, molar hydrogen-to-carbon ratio and distillation curve temperatures from T-10 to T-90. A market petroleum Diesel fuel with a cetane number of 50 and a threshold soot index of 31 was selected as the Baseline Diesel Fuel. The combustion, physical and chemical properties of the Baseline Diesel Fuel were precisely matched by the Baseline Surrogate Fuel. To validate the SBO predicted fuel properties, a set of five surrogate fuels, deviating in cetane number and threshold soot index, were blended and examined with ASTM tests. Good agreement was obtained between the SBO predicted and ASTM measured fuel properties. To further validate the Surrogate Fuel Library, key properties that were effected by altering the component blend ratios to control cetane number and TSI were compared to a set of five market Diesel fuels with good results. These properties included density, viscosity, energy density and the T-10 and T-90 distillation temperatures. The Surrogate Fuel Library provided by this work supplies Diesel engine researchers and designers the ability to analytically and experimentally vary fuel cetane number and threshold soot index with fully-representative surrogate fuels. This new capability to independently vary cetane number and threshold soot index provides a means to further enhance the understanding of Diesel combustion and design future combustion systems that improve efficiency and emissions.Szymkowicz, P.; Benajes, J. (2018). Development of a Diesel Surrogate Fuel Library. Fuel. 222:21-34. https://doi.org/10.1016/j.fuel.2018.01.112S213422

    Advances in nanocatalysts design for biofuels production

    Get PDF
    The exploitation of nanocatalysts, at the boundary between homogeneous and heterogeneous catalysis, is tracking new efficient ways to produce renewable biofuels in environmentally friendly conditions. Their solid state makes them recyclable, and their nanomateric particle size enables high activities approaching those offered by homogeneous catalysts, as well as novel and unique catalytic behaviors not accessible to solids above the nanometer range. Furthermore, the use of magnetically active materials has led to the development of nanocatalysts easily recoverable through the application of magnetic fields. In this mini-review, latest achievements in the production of advanced biofuels using stable, highly active, cheap and reusable nanocatalysts are described. Specifically, biodiesel and high density fuels have been chosen as major topics of research for the design of catalytic nanomaterials

    Traktoriai "John Deere" [G. Labeckas]

    No full text
    Vytauto Didžiojo universitetasŽemės ūkio akademij

    Mechaniko vadovėlis: serijos T: advance

    No full text
    Versta iš: Operator's Manual T: advanceVytauto Didžiojo universitetasŽemės ūkio akademij
    corecore