648 research outputs found

    Natural history of vanishing white matter

    Get PDF
    Objective: To comprehensively describe the natural history of vanishing white matter (VWM), aiming at improving counseling of patients/families and providing natural history data for future therapeutic trials. Methods: We performed a longitudinal multicenter study among 296 genetically confirmed VWM patients. Clinical information was obtained via disease-specific clinical questionnaire, Health Utilities Index and Guy's Neurological Disability Scale assessments, and chart review. Results: First disease signs occurred at a median age of 3 years (mode=2 years, range=before birth to 54 years); 60% of patients were symptomatic before the age of 4 years. The nature of the first signs varied for different ages of onset. Overall, motor problems were the most common presenting sign, especially in children. Adolescent and adult onset patients were more likely to exhibit cognitive problems early after disease onset. One hundred two patients were deceased. Multivariate Cox regression analysis revealed a positive relation between age at onset and both preservation of ambulation and survival. Absence of stress-provoked episodes and absence of seizures predicted more favorable outcome. In patients with onset before 4 years, earlier onset was associated with more severe disability and higher mortality. For onset from 4 years on, disease course was generally milder, with a wide variation in severity. There were no significant differences for sex or for the 5 eIF2B gene groups. The results confirm the presence of a genotype-phenotype correlation. Interpretation: The VWM disease spectrum consists of a continuum with extremely wide variability. Age at onset is a strong predictor for disease course

    The Behavioral and Cognitive Executive Disorders of Stroke: The GREFEX Study.

    Get PDF
    BACKGROUND: Many studies have highlighted the high prevalence of executive disorders in stroke. However, major uncertainties remain due to use of variable and non-validated methods. The objectives of this study were: 1) to characterize the executive disorder profile in stroke using a standardized battery, validated diagnosis criteria of executive disorders and validated framework for the interpretation of neuropsychological data and 2) examine the sensitivity of the harmonization standards protocol proposed by the National Institute of Neurological Disorders and Stroke and Canadian Stroke Network (NINDS-CSN) for the diagnosis of Vascular Cognitive Impairment. METHODS: 237 patients (infarct: 57; cerebral hemorrhage: 54; ruptured aneurysm of the anterior communicating artery (ACoA): 80; cerebral venous thrombosis (CVT): 46) were examined by using the GREFEX battery. The patients' test results were interpreted with a validated framework derived from normative data from 780 controls. RESULTS: Dysexecutive syndrome was observed in 88 (55.7%; 95%CI: 48-63.4) out of the 156 patients with full cognitive and behavioral data: 40 (45.5%) had combined behavioral and cognitive syndromes, 29 (33%) had a behavioral disorder alone and 19 (21.6%) had a cognitive syndrome alone. The dysexecutive profile was characterized by prominent impairments of initiation and generation in the cognitive domain and by hypoactivity with disinterest and anticipation loss in the behavioral domain. Cognitive impairment was more frequent (p = 0.014) in hemorrhage and behavioral disorders were more frequent (p = 0.004) in infarct and hemorrhage. The harmonization standards protocol underestimated (p = 0.007) executive disorders in CVT or ACoA. CONCLUSIONS: This profile of executive disorders implies that the assessment should include both cognitive tests and a validated inventory for behavioral dysexecutive syndrome. Initial assessment may be performed with a short cognitive battery, such as the harmonization standards protocol. However, administration of a full cognitive battery is required in selected patients

    Segmentation of Multiple Sclerosis Lesions across Hospitals: Learn Continually or Train from Scratch?

    Full text link
    Segmentation of Multiple Sclerosis (MS) lesions is a challenging problem. Several deep-learning-based methods have been proposed in recent years. However, most methods tend to be static, that is, a single model trained on a large, specialized dataset, which does not generalize well. Instead, the model should learn across datasets arriving sequentially from different hospitals by building upon the characteristics of lesions in a continual manner. In this regard, we explore experience replay, a well-known continual learning method, in the context of MS lesion segmentation across multi-contrast data from 8 different hospitals. Our experiments show that replay is able to achieve positive backward transfer and reduce catastrophic forgetting compared to sequential fine-tuning. Furthermore, replay outperforms the multi-domain training, thereby emerging as a promising solution for the segmentation of MS lesions. The code is available at this link: https://github.com/naga-karthik/continual-learning-msComment: Accepted at the Medical Imaging Meets NeurIPS (MedNeurIPS) Workshop 202

    Novel KRIT1/CCM1 mutation in a patient with retinal cavernous hemangioma and cerebral cavernous malformation

    Get PDF
    Retinal cavernous hemangiomas are rare vascular anomalies, and can be associated with cerebral cavernous malformations (CCM). Distinct mutations have been reported in patients who have both CCMs and retinal cavernous hemangiomas. Fluorescein angiography, spectral domain optical coherence tomography, and genetic testing were performed on a patient with a retinal cavernous hemangioma and a CCM. Our patient was heterozygous in the KRIT1/CCM1 gene for a frameshift mutation, c.1088delC. This would be predicted to result in premature protein termination. We have identified a novel mutation in the KRIT1/CCM1 gene in a patient with both CCM and retinal cavernous hemangioma. We hypothesize that the occurrence of retinal cavernous hemangiomas and CCMs is underlaid by a common mechanism present in the KRIT1/CCM1 gene

    Cerebral cavernous malformations associated to meningioma: High penetrance in a novel family mutated in the PDCD10 gene

    Get PDF
    Multiple familial meningiomas occur in rare genetic syndromes, particularly neurofibromatosis type 2. The association of meningiomas and cerebral cavernous malformations (CCMs) has been reported in few patients in the medical literature. The purpose of our study is to corroborate a preferential association of CCMs and multiple meningiomas in subjects harbouring mutations in the PDCD10 gene (also known as CCM3). Three members of an Italian family affected by seizures underwent conventional brain Magnetic Resonance Imaging (MRI) with gadolinium contrast agent including gradient echo (GRE) imaging. The three CCM-causative genes were sequenced by Sanger method. Literature data reporting patients with coexistence of CCMs and meningiomas were reviewed. MRI demonstrated dural-based meningioma-like lesions associated to multiple parenchymal CCMs in all affected individuals. A disease-causative mutation in the PDCD10 gene (p.Gln112PhefsX13) was identified. Based on neuroradiological and molecular data as well as on literature review, we outline a consistent association between PDCD10 mutations and a syndrome of CCMs with multiple meningiomas. This condition should be considered in the differential diagnosis of multiple/familial meningioma syndromes. In case of multiple/familial meningioma the use of appropriate MRI technique may include GRE and/or susceptibility-weighted imaging (SWI) to rule out CCM. By contrast, proper post-gadolinium scans may aid defining dural lesions in CCM patients and are indicated in PDCD10-mutated individuals

    Decreased sAβPPβ, Aβ38, and Aβ40 Cerebrospinal Fluid Levels in Frontotemporal Dementia.

    Get PDF
    International audienceTo improve the etiological diagnosis of neurodegenerative dementias like Alzheimer's disease (AD) or frontotemporal dementia (FTD), we evaluated the value of individual and combined measurements of the following relevant cerebrospinal fluid (CSF) biomarkers: Tau, 181p-Tau, Aβ38, Aβ40, Aβ42, sAβPPα, and sAβPPβ. This study conducted in two centers included patients with FTD (n = 34), AD (n = 52), as well as a control group of persons without dementia (CTRL, n = 42). Identical clinical criteria and pre-analytical conditions were used while CSF biomarkers were measured using commercial single and multiplex quantitative immunoassays. Thorough statistical analyses, including ROC curves, logistic regressions, and decision trees, were performed. We validated in AD the specific increase of p-Tau levels and the decrease of Aβ42 levels, two biological hallmarks of this disease. Tau concentrations were highest in AD and intermediate in FTD when compared to CTRL. The most interesting results were obtained by focusing on amyloid biomarkers as we found out in FTD a significant decrease of sAβPPβ, Aβ38, and Aβ40 levels. Aβ38 in particular was the most useful biomarker to differentiate FTD subjects from the CTRL population. Combining p-Tau and Aβ38 led us to correctly classifying FTD patients with sensitivity at 85% and specificity at 82%. Significant changes in amyloid biomarkers, particularly for Aβ38, are therefore seen in FTD. This could be quite useful for diagnosis purposes and it might provide additional evidence on the interrelationship between Tau and AβPP biology which understanding is essential to progress towards optimal therapeutic and diagnostic approaches of dementia

    Correlations between soluble alpha/beta forms of amyloid precursor protein and Abeta38, 40 and 42 in human cerebrospinal fluid

    Get PDF
    International audienceCerebrospinal fluid (CSF) biomarkers are now widely used for diagnosis of Alzheimer disease (AD) in atypical clinical forms, for differential and early diagnosis, or for stratification of patients in clinical trials. Among these biomarkers, different forms of amyloid peptides (Aβ) produced by the cleavage of a transmembrane precursor protein called APP (amyloid precursor protein) have a major role. Aβ peptides exist in different length the most common ones having 40 (Aβ40), 42 (Aβ42), or 38 (Aβ38) amino acids in length. APP processing by gamma-secretase releases also an amino-terminal secreted fragment called sAβPP-beta while an alternative nonamyloidogenic cleavage of APP, through an alpha-secretase, liberates another fragment called sAβPP-alpha. To decipher the molecular and pathological mechanisms leading to the production and the detection of these entities is essential for the comprehension and the prevention of AD. In this report, we present the results of the Keywords: Biomarkers CSF Soluble amyloid precursor proteins Aβ fragment peptides Alzheimer disease Dementi

    A MANBA mutation resulting in residual beta-mannosidase activity associated with severe leukoencephalopathy: a possible pseudodeficiency variant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-Mannosidosis (OMIM 248510) is a rare inborn lysosomal storage disorder caused by the deficient activity of β-mannosidase, an enzyme encoded by a single gene (<it>MANBA</it>) located on chromosome 4q22-25. To date, only 20 cases of this autosomal recessive disorder have been described and 14 different <it>MANBA </it>mutations were incriminated in the disease. These are all null mutations or missense mutations that abolish β-mannosidase activity. In this study, we characterized the molecular defect of a new case of β-mannosidosis, presenting with a severe neurological disorder.</p> <p>Methods</p> <p>Genomic DNA was isolated from peripheral blood leukocytes of the patient to allow <it>MANBA </it>sequencing. The identified mutation was engineered by site-directed mutagenesis and the mutant protein was expressed through transient transfection in HEK293T cells. The β-mannosidase expression and activity were respectively assessed by Western blot and fluorometric assay in both leukocytes and HEK293T cells.</p> <p>Results</p> <p>A missense disease-associated mutation, c.1922G>A (p.Arg641His), was identified for which the patient was homozygous. In contrast to previously described missense mutations, this substitution does not totally abrogate the enzyme activity but led to a residual activity of about 7% in the patient's leukocytes, 11% in lymphoblasts and 14% in plasma. Expression studies in transfected cells also resulted in 7% residual activity.</p> <p>Conclusion</p> <p>Correlations between MANBA mutations, residual activity of β-mannosidase and the severity of the ensuing neurological disorder are discussed. Whether the c.1922G>A mutation is responsible for a yet undescribed pseudodeficiency of β-mannosidase is also discussed.</p

    Secondary Progressive Multiple Sclerosis: A Review of Clinical Characteristics, Definition, Prognostic Tools, and Disease-Modifying Therapies

    Get PDF
    Many challenges exist in the precise diagnosis and clinical management of secondary progressive multiple sclerosis (SPMS) because of the lack of definitive clinical, imaging, immunologic, or pathologic criteria that demarcate the transition from relapsing-remitting MS to SPMS. This review provides an overview of the diagnostic criteria/definition and the heterogeneity associated with different SPMS patient populations; it also emphasizes the importance of available prospective/retrospective tools to identify patients with SPMS earlier in the disease course so that approved disease-modifying therapies and nonpharmacological strategies will translate into better outcomes. Delivery of such interventions necessitates an evolving patient-clinician dialog within the context of a multidisciplinary team
    corecore