276 research outputs found
CORM-3 induces DNA damage through Ru(II) binding to DNA
When the âCO-releasing molecule-3â, CORM-3 (Ru(CO)3Cl(glycinate)), is dissolved in water it forms a range of ruthenium complexes. These are taken up by cells and bind to intracellular ligands, notably thiols such as cysteine and glutathione, where the Ru(II) reaches high intracellular concentrations. Here, we show that the Ru(II) ion also binds to DNA, at exposed guanosine N7 positions. It therefore has a similar cellular target to the anticancer drug cisplatin, but not identical, because Ru(II) shows no evidence of forming intramolecular crossbridges in the DNA. The reaction is slow, and with excess Ru, intermolecular DNA crossbridges are formed. The addition of CORM-3 to human colorectal cancer cells leads to strand breaks in the DNA, as assessed by the alkaline comet assay. DNA damage is inhibited by growth media containing amino acids, which bind to extracellular Ru and prevent its entry into cells. We conclude that the cytotoxicity of Ru(II) is different from that of platinum, making it a promising development target for cancer therapeutics
Energy relaxation of an excited electron gas in quantum wires: many-body electron LO-phonon coupling
We theoretically study energy relaxation via LO-phonon emission in an excited
one-dimensional electron gas confined in a GaAs quantum wire structure. We find
that the inclusion of phonon renormalization effects in the theory extends the
LO-phonon dominated loss regime down to substantially lower temperatures. We
show that a simple plasmon-pole approximation works well for this problem, and
discuss implications of our results for low temperature electron heating
experiments in quantum wires.Comment: 10 pages, RevTex, 4 figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Search for the standard model Higgs boson in tau final states
We present a search for the standard model Higgs boson using hadronically
decaying tau leptons, in 1 inverse femtobarn of data collected with the D0
detector at the Fermilab Tevatron ppbar collider. We select two final states:
tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These
final states are sensitive to a combination of associated W/Z boson plus Higgs
boson, vector boson fusion and gluon-gluon fusion production processes. The
observed ratio of the combined limit on the Higgs production cross section at
the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of
115 GeV.Comment: publication versio
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for a narrow scalar or vector resonance decaying into
Zgamma with a subsequent Z decay into a pair of electrons or muons. The data
for this search were collected with the D0 detector at the Fermilab Tevatron
ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0)
fb-1 of data, we observe 49 (50) candidate events in the electron (muon)
channel, in good agreement with the standard model prediction. From the
combination of both channels, we derive 95% C.L. upper limits on the cross
section times branching fraction (sigma x B) into Zgamma. These limits range
from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5
(3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
- âŠ