44 research outputs found

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Hormesis: Implications for Cancer Risk Assessment

    Get PDF
    Current guidelines for cancer risk assessment emphasize a toxicant's “mode of action”, rather than its empirically derived dose-response relationship, for determining whether linear low-dose extrapolation is appropriate. Thus, for reasons of policy, demonstration of hormesis is generally insufficient to justify a non-linear approach, although it may provide important insights into the actions of toxicants. We evaluated dose-response characteristics of four carcinogens reported to have hormetic dose-response curves: cadmium chloride; ionizing radiation; PAHs; and, 2,3,7,8-TCDD. For each, the study that documented hormesis in one organ also provided evidence of non-hormetic dose-responses in other organs or non-hormetic responses for seemingly similar carcinogens in the same species and organs. Such inconsistency suggests toxicologic reasons that the finding of hormesis alone is not sufficient to justify use of non-linear low-dose extrapolations. Moreover, available data in those examples are not sufficient to know whether hormesis is a property of the toxicants, the target organ, or the exposed species. From the perspectives of cancer risk assessment, the greatest informational value of hormesis may be that it provokes mechanistic studies intended to explain why hormesis occurs

    Radiation Hormesis: The Good, the Bad, and the Ugly

    Get PDF
    Three aspects of hormesis with low doses of ionizing radiation are presented: the good, the bad, and the ugly. The good is acceptance by France, Japan, and China of the thousands of studies showing stimulation and/or benefit, with no harm, from low dose irradiation. This includes thousands of people who live in good health with high background radiation. The bad is the nonacceptance of radiation hormesis by the U. S. and most other governments; their linear no threshold (LNT) concept promulgates fear of all radiation and produces laws which have no basis in mammalian physiology. The LNT concept leads to poor health, unreasonable medicine and oppressed industries. The ugly is decades of deception by medical and radiation committees which refuse to consider valid evidence of radiation hormesis in cancer, other diseases, and health. Specific examples are provided for the good, the bad, and the ugly in radiation hormesis

    The Maturing of Hormesis as a Credible Dose-Response Model

    No full text
    Hormesis is a dose-response phenomenon that has received little recognition, credibility and acceptance as evidenced by its absence from major toxicological/risk assessment texts, governmental regulatory dose-response modeling for risk assessment, and non-visibility in major professional toxicological society national meetings. This paper traces the historical evolution of the hormetic dose-response hypothesis, why this model is not only credible but also more common than the widely accepted threshold model in direct comparative evaluation, and how the toxicological community made a critical error in rejecting hormesis, a rejection sustained over 70 years
    corecore