330 research outputs found

    A simulation model of the Devils Hole pupfish population using monthly length-frequency distributions

    Get PDF
    The Devils Hole pupfish, Cyprinodon diabolis, is a federally-endangered fish that is endemic to Devils Hole, a discontiguous part of Death Valley National Park in Nye County, Nevada. Due to its status, Devils Hole pupfish monitoring must be non-obtrusive and thereby exclude techniques that require handling fish. Due to a recent decline in pupfish abundance, Devils Hole pupfish managers have expressed a need for a model that describes population dynamics. This population model would be used to identify vulnerable life history stage(s) and inform management actions. We constructed a set of individualbased simulation models designed to explore effects of population processes and evaluate assumptions. We developed a baseline model, whose output best resembled both observed length-frequency data and predicted intraannual abundance patterns. We then ran simulations with 5 % increases in egg-larval, juvenile, and adult survival rates to better understand Devils Hole pupfish life history, thereby helping identify vulnerable life history stages that should become the target of management actions. Simulation models with temporally constant adult, juvenile, and egg-larval survival rates were able to reproduce observed length-frequency distributions and predicted intra-annual population patterns. In particular, models with monthly adult and juvenile survival rates of 80 % and an egg-larval survival rate of 4.7 % replicated patterns in observed data. Population growth was most affected by 5 % increases in egg-larval survival, whereas adult and juvenile survival rates had similar but lesser effects on population growth. Outputs from the model were used to assess factors suspected of influencing Devils Hole pupfish population decline

    First Evidence for Adoption in California Sea Lions

    Get PDF
    Demographic parameters such as birth and death rates determine the persistence of populations. Understanding the mechanisms that influence these rates is essential to developing effective management strategies. Alloparental behavior, or the care of non-filial young, has been documented in many species and has been shown to influence offspring survival. However, the role of alloparental behavior in maintaining population viability has not been previously studied. Here, we provide the first evidence for adoption in California sea lions and show that adoption potentially works to maintain a high survival rate of young and may ultimately contribute to population persistence. Alloparental behavior should have a positive effect on the population growth rate when the sum of the effects on fitness for the alloparent and beneficiary is positive

    Hardness and approximation for the geodetic set problem in some graph classes

    Full text link
    In this paper, we study the computational complexity of finding the \emph{geodetic number} of graphs. A set of vertices SS of a graph GG is a \emph{geodetic set} if any vertex of GG lies in some shortest path between some pair of vertices from SS. The \textsc{Minimum Geodetic Set (MGS)} problem is to find a geodetic set with minimum cardinality. In this paper, we prove that solving the \textsc{MGS} problem is NP-hard on planar graphs with a maximum degree six and line graphs. We also show that unless P=NPP=NP, there is no polynomial time algorithm to solve the \textsc{MGS} problem with sublogarithmic approximation factor (in terms of the number of vertices) even on graphs with diameter 22. On the positive side, we give an O(n3log⁥n)O\left(\sqrt[3]{n}\log n\right)-approximation algorithm for the \textsc{MGS} problem on general graphs of order nn. We also give a 33-approximation algorithm for the \textsc{MGS} problem on the family of solid grid graphs which is a subclass of planar graphs

    Recovery of a US Endangered Fish

    Get PDF
    BACKGROUND: More fish have been afforded US Endangered Species Act protection than any other vertebrate taxonomic group, and none has been designated as recovered. Shortnose sturgeon (Acipenser brevirostrum) occupy large rivers and estuaries along the Atlantic coast of North America, and the species has been protected by the US Endangered Species Act since its enactment. METHODOLOGY/PRINCIPAL FINDINGS: Data on the shortnose sturgeon in the Hudson River (New York to Albany, NY, USA) were obtained from a 1970s population study, a population and fish distribution study we conducted in the late 1990s, and a fish monitoring program during the 1980s and 1990s. Population estimates indicate a late 1990s abundance of about 60,000 fish, dominated by adults. The Hudson River population has increased by more than 400% since the 1970s, appears healthy, and has attributes typical for a long-lived species. Our population estimates exceed the government and scientific population recovery criteria by more than 500%, we found a positive trend in population abundance, and key habitats have remained intact despite heavy human river use. CONCLUSIONS/SIGNIFICANCE: Scientists and legislators have called for changes in the US Endangered Species Act, the Act is being debated in the US Congress, and the Act has been characterized as failing to recover species. Recovery of the Hudson River population of shortnose sturgeon suggests the combination of species and habitat protection with patience can yield successful species recovery, even near one of the world's largest human population centers

    Which States Matter? An Application of an Intelligent Discretization Method to Solve a Continuous POMDP in Conservation Biology

    Get PDF
    When managing populations of threatened species, conservation managers seek to make the best conservation decisions to avoid extinction. Making the best decision is difficult because the true population size and the effects of management are uncertain. Managers must allocate limited resources between actively protecting the species and monitoring. Resources spent on monitoring reduce expenditure on management that could be used to directly improve species persistence. However monitoring may prevent sub-optimal management actions being taken as a result of observation error. Partially observable Markov decision processes (POMDPs) can optimize management for populations with partial detectability, but the solution methods can only be applied when there are few discrete states. We use the Continuous U-Tree (CU-Tree) algorithm to discretely represent a continuous state space by using only the states that are necessary to maintain an optimal management policy. We exploit the compact discretization created by CU-Tree to solve a POMDP on the original continuous state space. We apply our method to a population of sea otters and explore the trade-off between allocating resources to management and monitoring. We show that accurately discovering the population size is less important than management for the long term survival of our otter population

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Molecular and Phylogenetic Analyses Suggest an Additional Hepatitis B Virus Genotype “I”

    Get PDF
    A novel hepatitis B virus (HBV) strain (W29) was isolated from serum samples in the northwest of China. Phylogenetic and distance analyses indicate that this strain is grouped with a series of distinct strains discovered in Vietnam and Laos that have been proposed to be a new genotype I. TreeOrderScan and GroupScan methods were used to study the intergenotype recombination of this special group. Recombination plots and tree maps of W29 and these putative genotype I strains exhibit distinct characteristics that are unexpected in typical genotype C strains of HBV. The amino acids of P gene, S gene, X gene, and C gene of all genotypes (including subtypes) were compared, and eight unique sites were found in genotype I. In vitro and in vivo experiments were also conducted to determine phenotypic characteristics between W29 and other representative strains of different genotypes obtained from China. Secretion of HBsAg in Huh7 cells is uniformly abundant among genotypes A, B, C, and I (W29), but not genotype D. HBeAg secretion is low in genotype I (W29), whose level is close to genotype A and much lower than genotypes B, C, and D. Results from the acute hydrodynamic injection mouse model also exhibit a similar pattern. From an overview of the results, the viral markers of W29 (I1) in Huh7 cells and mice had a more similar level to genotype A than genotype C, although the latter was closer to W29 in distance analysis. All evidence suggests that W29, together with other related strains found in Vietnam and Laos, should be classified into a new genotype

    Cancer patients' needs during hospitalisation: a quantitative and qualitative study

    Get PDF
    BACKGROUND: The evaluation of cancer patients needs, especially during that delicate period when they are hospitalized, allows the identification of those areas of care that require to be improved. Aims of the study were to evaluate the needs in cancer inpatients and to improve the understanding of the meanings of the needs expressed. METHODS: The study was conducted during a "sample day", with all the cancer patients involved having been hospitalized at the Istituto Nazionale Tumori of Milan (INT) for at least 48 hours beforehand. The study was carried out using quantitative and qualitative methodologies. The quantitative part of the study consisted in making use of the Needs Evaluation Questionnaire (NEQ), a standardized questionnaire administered by the INT Psychology Unit members, supported by a group of volunteers from the Milan section of the Italian League Against Cancer. The aim of the qualitative part of the study, by semi-structured interviews conducted with a small sample of 8 hospitalized patients, was to improve our understanding of the meanings, implications of the needs directly described from the point of view of the patients. Such an approach determines the reasons and conditions of the dissatisfaction in the patient, and provides additional information for the planning of improvement interventions. RESULTS: Of the 224 eligible patients, 182 (81%) completed the questionnaire. Four of the top five needs expressed by 40% or more of the responders concerned information needs (diagnosis, future conditions, dialogue with doctors, economic-insurance solutions related to the disease). Only one of the 5 was concerned with improved "hotel" services (bathrooms, meals, cleanliness). Qualitative analysis showed that the most expressed need (to receive more information on their future conditions) has the meaning to know how their future life will be affected more than to know his/her actual prognosis. CONCLUSIONS: Some of the needs which emerged from this investigation could be immediately satisfied (the need for psychological support, the need for economic aid, the need for spiritual support), while others will have to be faced in the longer term; for example, the presence of a high percentage of needs in patient-physician relationships and/or information-communication issues, could be resolved by setting up structured introductory training courses for all clinicians in the institution. On the other hand, the needs related to the living infrastructure (bathrooms, meals, etc...) could encourage the Institution to improve its services
    • 

    corecore